Шрифт:
Интервал:
Закладка:
Наблюдая реликтовое излучение, мы изучаем фотоны, путешествовавшие почти 14 миллиардов лет. А учитывая тот факт, что любые фотоны, возникшие до момента разделения, тоже путешествовали далеко от нас со скоростью света в течение того же периода времени, можно сделать вывод: раз реликтовое излучение поступает к нам почти в одинаковом количестве со всех сторон, значит, Вселенная была однородной почти повсюду.
Но почему нас должно волновать это излучение? Что интересного может сообщить нам космическое море фотонов? Ответ имеет огромную информационную ценность: эти фотоны несут отпечаток давно минувшего прошлого, самого давнего, которое только можно наблюдать (за исключением еще более отдаленного прошлого, которое человечество сможет наблюдать в XXII веке), и раскрывают важнейшие факты о молодой Вселенной, когда ее возраст был меньше одной сорокатысячной нынешнего возраста.
Особое удовлетворение астрофизикам доставляют крошечные различия в количестве и энергии фотонов реликтового излучения, которые приносит к нам из разных направлений. Эти вариации обусловлены неравномерным распределением вещества в эпоху разделения. В некоторых областях плотность материи была чуть выше средней, в некоторых — чуть ниже. Вся структура современной Вселенной отражает эти различия в плотности, потому что море фотонов накапливало их все это время. Области с более высокой плотностью имели больше шансов сформировать огромные скопления галактик; области с более низкой плотностью были лишены возможности концентрировать материю и превратились в пустоты.
Реликтовое излучение — прекрасный пример того, как появление результатов достаточно точных наблюдений приводит к победе одной из соперничающих теорий. Это открытие примечательно тем, что существование реликтового излучения было предсказано еще до того, как ученые получили возможность наблюдать его, и в данном случае предсказание было сделано за два десятилетия до появления технологии, позволившей доказать его верность. В 1927 году бельгийский католический священник Жорж Леметр, который также был космологом (в чем, конечно, есть определенный смысл), основываясь на общей теории относительности Альберта Эйнштейна, создал концепцию «первоначального атома» — по сути дела предтечи модели Большого взрыва. Двадцать лет спустя, следуя рассуждениям Леметра, физик украинского происхождения Георгий Гамов (к тому времени гражданин США) в сотрудничестве с Ральфом Алфером и Робертом Херманом пришел к выводу, что ранняя Вселенная должна была быть чрезвычайно горячей, а затем постепенно охлаждаться. Алфер и Херман использовали законы физики для описания расширения Вселенной после момента разделения, когда образовались первые атомы, а фотоны смогли свободно перемещаться в пространстве, и пришли к выводу, что теперь реликтовое излучение должно иметь температуру, близкую к 5 К.
Да, их подсчет оказался неверным — сегодня мы знаем, что фактическая температура реликтового излучения составляет 2,73 градуса по шкале Кельвина. Но это не умаляет того факта, что эти трое ученых пришли к верному выводу об устройстве мира в столь древнюю космическую эпоху — и это достижение не менее важно, чем любое другое в истории науки. Взять за основу базовые закономерности физики, сидя в уютной лаборатории, и выявить с их помощью крупнейший комплекс данных, когда-либо измеренных, — получить кривую температурной истории Вселенной, — если это не сногсшибательно, то тогда вообще неясно, что можно считать таковым. Профессор Джон Ричард Готт III, астрофизик Принстонского университета, дал следующую оценку этому успеху в своей книге «Путешествия во времени в эйнштейновской Вселенной»[7]:
«Предсказать существование излучения и затем предположить значение его температуры, ошибившись менее чем в два раза, — это замечательное достижение: это как если бы вы предсказали, что летающая тарелка диаметром 50 футов[8] приземлится на газон у Белого дома, и затем стали свидетелем того, как именно туда прилетает и садится 27-футовая[9] тарелка».
Когда Гамов, Алфер и Херман озвучили свои предположения, физики все еще не имели на руках точной истории зарождения Вселенной. В 1948 году, когда увидела свет работа Алфера и Германа, в Англии также вышли две научные статьи о теории «стационарной Вселенной». Одна из них была написана математиком Германом Бонди и астрофизиком Томасом Голдом, а другая — космологом Фредом Хойлом. Согласно теории стационарной Вселенной, последняя, хотя и расширяется, всегда выглядела и выглядит одинаково. Надо признать, эта гипотеза весьма привлекательна своей простотой. Но так как Вселенная все же расширяется, а стационарная Вселенная не могла бы вчера оказаться более горячей или более плотной, чем сегодня, сценарий Бонди, Голда и Хойла предполагает, что она постоянно «пополняется» новым веществом как раз с нужной скоростью для того, чтобы плотность бесконечно расширяющегося космоса не менялась. В противовес этому теория Большого взрыва (такой «кличкой» ее презрительно наградил Хойл, не зная, что она приживется) подразумевает, что все вещество, имеющееся сегодня во Вселенной, появилось разом. Некоторые находят в этой идее определенное утешение. Обратите внимание: теория стационарной Вселенной просто отодвигает в неопределенное прошлое сам вопрос о ее возникновении как таковом — уж очень удобная позиция для тех, кто предпочел бы вообще не касаться этой колючей темы.
Высказанное предположение о реликтовом излучении стало своеобразным предупредительным выстрелом в стан поклонников теории стационарной Вселенной. Его существование явно доказало бы, что когда-то Вселенная была совсем другой — гораздо плотнее и горячее, чем сегодня. Соответственно первые прямые улики, говорящие о реликтовом излучении, вогнали первые несколько гвоздей в крышку гроба стационарной теории (хотя Фред Хойл так никогда до конца и не принял факта существования реликтового излучения, подрывающего его элегантную теорию, и до самой смерти пытался найти ему альтернативное объяснение). В 1964 году реликтовое излучение было по счастливому стечению обстоятельств обнаружено радиофизиками Арно Пензиасом и Робертом Уилсоном в лабораториях компании Bell Telephone в Мюррей-Хилл, штат Нью-Джерси. Чуть более десятилетия спустя Пензиас и Уилсон получат Нобелевскую премию за свою невероятную удачу и кропотливую работу.
Что же привело Пензиаса и Уилсона в нобелевские лауреаты? В начале 1960-х все физики были знакомы с микроволновым излучением, но почти никому не удавалось обнаружить наиболее слабые сигналы в микроволновой части спектра. В те дни большинство беспроводных способов коммуникации (рации, детекторы и др.) работало на радиоволнах, а их длина превышает длину СВЧ-волн. Ученым требовалось устройство, способное обнаружить волну более короткой длины, то есть была нужна более чувствительная антенна, которая могла такой сигнал