litbaza книги онлайнДомашняяКрасота физики. Постигая устройство природы - Фрэнк Вильчек

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 6 7 8 9 10 11 12 13 14 ... 136
Перейти на страницу:

«Почему звуки, частоты которых соотносятся как небольшие целые числа, дают приятное созвучие?»

Давайте рассмотрим, что происходит в мозге, когда звуки двух различных частот проигрываются одновременно. Тогда мы получаем два набора первичных нейронов, активно реагирующих с той же частотой, как и вибрация струны, породившая всю цепочку процессов. Эти первичные нейроны передают свой сигнал в глубины мозга «более высоким» уровням нейронов, где сигналы сочетаются и объединяются.

Некоторые из этих нейронов следующего уровня получат входящие сигналы от обоих наборов первичных возбужденных нейронов. Если частоты первичных нейронов соотносятся как небольшие целые числа, тогда их сигналы могут быть синхронизированы. (В этом обсуждении мы упрощаем реальный отклик, игнорируя шум и считая его в точности периодичным.) Например, если звуки формируют октаву, один набор нейронов будет колебаться в два раза быстрее другого и каждый нейрон из более медленной группы будет вступать в те же предсказуемые отношения с нейроном быстрой. Таким образом, нейроны, воспринимающие сигнал от обоих первичных наборов, получат вполне предсказуемый повторяющийся шаблон, который легко интерпретировать. Из предыдущего опыта (хотя, возможно, это врожденный инстинкт) эти вторичные нейроны – или более поздние нейроны, интерпретирующие их поведение, – «поймут» сигнал. Таким образом, для них становится легче предсказать будущие входящие сигналы (следующие повторы), а простые предсказания будущего поведения будут порождаться на протяжении многократных восприятий вибрации, пока звук не изменит свой характер.

Хочу отметить, что звуки, которые мы можем слышать, имеют частоты в пределах от нескольких десятков до нескольких тысяч колебаний в секунду, так что даже краткие звуки производят множество повторений, за исключением самых низкочастотных. На низких же частотах наше чувство гармонии иссякает, точно так же, как и эта мысль, которую я сейчас пытаюсь додумать.

Более высоким уровням нейронов, которые сочетают уже объединенные сигналы, нужен понятный входной сигнал, чтобы справиться со своей работой. Поэтому если наши «объединители» производят имеющий смысл сигнал и в особенности если их предсказания проходят проверку по времени, то в интересах нейронов более высокого уровня вознаградить их какой-либо положительной обратной связью или по крайней мере оставить в покое. И наоборот, если «объединители» производят неправильные предсказания, ошибки будут распространяться на более высокие уровни, немедленно породив дискомфорт и желание прекратить этот процесс.

Когда «объединители» будут производить неверные предсказания? Это произойдет, когда первичные сигналы почти, но не совсем синхронизированы. В этом случае колебания будут усиливать друг друга в течение нескольких циклов, и «объединители» проэкстраполируют эту модель. Они будут ожидать, что она продолжится, но этого-то и не произойдет! И в самом деле, звуки, которые только слегка различаются (как до и до-диез, например), особенно неприятны, если проигрываются вместе.

Если эта идея правильна, тогда в основе гармонии лежит успешное предсказание на ранних стадиях восприятия. (Этот процесс предсказания не нуждается и обычно не сопровождается привлечением сознательного внимания.) Успех в нем воспринимается как удовольствие или красота. Напротив, неудачное предсказание – источник боли или ощущения безобразия. Отсюда следует, что, расширяя наш опыт и знания, мы можем услышать гармонию, которая раньше была скрыта от нас, и избавиться от источников боли.

В историческом развитии западной музыки набор приемлемых комбинаций звуков постепенно расширялся. Отдельные люди при повторяющемся воздействии незнакомых им ранее мелодий также могут научиться наслаждаться сочетаниями звуков, которые изначально показались им неприятными. В самом деле, если мы заточены под то, чтобы получать удовольствие, учась делать удачные предсказания, тогда предсказания, давшиеся нам слишком легко, не доставят нам того огромного удовольствия, которое и должно быть в новизне.

Платон I: Структура из симметрии – платоновы тела

Платоновы тела поддерживают вокруг себя какую-то магию. Они всегда были и остаются теми объектами, с которыми можно творить волшебство. Они уходят корнями глубоко в доисторическую пору человечества и живут сейчас как предметы, сулящие удачу или неудачу в самых известных настольных играх, в частности в знаменитых «Подземельях и драконах». Кроме того, их таинственная сила вдохновила ученых на некоторые из самых плодотворных открытий в развитии математики и физики. Их невыразимая красота достойна того, чтобы поглубже сконцентрироваться на них.

Альбрехт Дюрер на своей гравюре «Меланхолия I» (илл. 4) подразумевает очарование правильных многогранников, хотя тело, изображенное на его картине, не вполне платоново. (Технически это усеченный треугольный трапецоэдр. Он может быть получен растягиванием граней октаэдра определенным образом.) Возможно, Крылатый Гений впал в меланхолию, потому что не может вникнуть, почему злобная летучая мышь сбросила ему в кабинет именно это, не вполне платоново тело вместо правильной фигуры.

Красота физики. Постигая устройство природы

Илл. 4. Альбрехт Дюрер «Меланхолия I»

На картине изображено усеченное платоново тело, магический квадрат и множество других эзотерических символов. С моей точки зрения, она прекрасно показывает досаду, которую я часто испытываю, пытаясь с помощью чистой идеи понять реальность. К счастью, так бывает не всегда.

Правильные многоугольники

Прежде чем перейти к платоновым телам, давайте начнем с чего-нибудь попроще – с их самых близких аналогов в двух измерениях, а именно с правильных многоугольников. Правильный многоугольник – это плоская фигура, у которой все стороны равны и смыкаются под равными углами. Самый простой правильный многоугольник имеет три стороны – это равносторонний треугольник. Далее идет квадрат с четырьмя сторонами. Затем – правильный пятиугольник, или пентагон (который был выбран символом пифагорейцев и взят за основу в проекте хорошо известной штаб-квартиры вооруженных сил[9]), шестиугольник (часть пчелиного улья и, как мы увидим далее, графена[10]), семиугольник (его можно найти на различных монетах), восьмиугольник (знаки обязательной остановки), девятиугольник… Этот ряд можно продолжать бесконечно: для каждого целого числа, начиная с трех, существует уникальный правильный многоугольник. В каждом случае количество вершин равно количеству сторон. Мы также можем рассматривать круг как предельный случай правильного многоугольника, где число сторон становится бесконечным.

1 ... 6 7 8 9 10 11 12 13 14 ... 136
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?