Шрифт:
Интервал:
Закладка:
Глава 5
Мозг двадцать первого столетия
1. K. J. Friston, ‘The Fantastic Organ’, Brain 136:4 (2013), pp. 1328–32. • 2. N. K. Logothetis, ‘The Ins and Outs of fMRI Signals’, Nature Neuroscience 10:10 (2007), p. 1230. • 3. K. J. Friston, ‘Functional and Effective Connectivity: A Review’, Brain Connectivity 1:1 (2011), pp. 13–36. • 4. Y. Assaf and O. Pasternak, ‘Diffusion Tensor Imaging (DTI)-Based White Matter Mapping in Brain Research: A Review’, Journal of Molecular Neuroscience 34:1 (2008), pp. 51–61. • 5. A. Holtmaat and K. Svoboda, ‘Experience-Dependent Structural Synaptic Plasticity in the Mammalian Brain’, Nature Reviews Neuroscience 10:9 (2009), p. 647. • 6. A. Razi and K. J. Friston, ‘The Connected Brain: Causality, Models, and Intrinsic Dynamics’, IEEE Signal Processing Magazine 33:3 (2016), pp. 14–35. • 7. A. von Stein and J. Sarnthein, ‘Different Frequencies for Different Scales of Cortical Integration: From Local Gamma to Long Range Alpha/Theta Synchronization’, International Journal of Psychophysiology 38:3 (2000), pp. 301–13. • 8. S. Baillet, ‘Magnetoencephalography for Brain Electrophysiology and Imaging’, Nature Neuroscience 20:3 (2017), p. 327. • 9. W. D. Penny, S. J. Kiebel, J. M. Kilner and M. D. Rugg, ‘Event-Related Brain Dynamics’, Trends in Neurosciences 25:8 (2002), pp. 387–9. • 10. K. Kessler, R. A. Seymour and G. Rippon, ‘Brain Oscillations and Connectivity in Autism Spectrum Disorders (ASD): New Approaches to Methodology, Measurement and Modelling’, Neuroscience and Biobehavioral Reviews 71 (2016), pp. 601–20. • 11. S. E. Fisher, ‘Translating the Genome in Human Neuroscience’, in G. Marcus and J. Freeman (eds), The Future of the Brain: Essays by the World’s Leading Neuroscientists (Princeton, NJ, Princeton University Press, 2015), pp. 149–58. • 12. S. R. Chamberlain, U. Müller, A. D. Blackwell, L. Clark, T. W. Robbins and B. J. Sahakian, ‘Neurochemical Modulation of Response Inhibition and Probabilistic Learning in Humans’, Science 311:5762 (2006), pp. 861–3. • 13. C. Eliasmith, ‘Building a Behaving Brain’, in Marcus and Freeman (eds), The Future of the Brain, pp. 125–36. • 14. A. Zador, ‘The Connectome as a DNA Sequencing Problem’, in Marcus and Freeman (eds), The Future of the Brain, 2015), pp. 40–49, at p. 46. • 15. J. W. Lichtman, J. Livet and J. R. Sanes, ‘A Technicolour Approach to the Connectome’, Nature Reviews Neuroscience 9:6 (2008), p. 417. • 16. G. Bush, P. Luu and M. I. Posner, ‘Cognitive and Emotional Influences in Anterior Cingulate Cortex’, Trends in Cognitive Sciences 4:6 (2000), pp. 215–22. • 17. M. Alper, ‘The “God” Part of the Brain: A Scientific Interpretation of Human Spirituality and God’ (Naperville, IL, Sourcebooks, 2008). • 18. J. H. Barkow, L. Cosmides and J. Tooby (eds), The Adapted Mind: Evolutionary Psychology and the Generation of Culture (New York, Oxford University Press, 1992). • 19. Penny et al., ‘Event-Related Brain Dynamics’. • 20. G. Shen, T. Horikawa, K. Majima and Y. Kamitani, ‘Deep Image Reconstruction from Human Brain Activity’, bioRxiv (2017), 240317. • 21. R. A. Thompson and C. A. Nelson, ‘Developmental Science and the Media: Early Brain Development’, American Psychologist 56:1 (2001), pp. 5–15. • 22. Thompson and Nelson, ‘Developmental Science and the Media’, p. 5. • 23. A. May, ‘Experience-Dependent Structural Plasticity in the Adult Human Brain’, Trends in Cognitive Sciences 15:10 (2011), pp. 475–82. • 24. Y. Chang, ‘Reorganization and Plastic Changes of the Human Brain Associated with Skill Learning and Expertise’, Frontiers in Human Neuroscience 8 (2014), art. 35. • 25. B. Draganski and A. May, ‘Training-Induced Structural Changes in the Adult Human Brain’, Behavioural Brain Research 192:1 (2008), pp. 137–42. • 26. E. A. Maguire, D. G. Gadian, I. S. Johnsrude, C. D. Good, J. Ashburner, R. S. Frackowiak and C. D. Frith, ‘Navigation-Related Structural Change in the Hippocampi of Taxi Drivers’, Proceedings of the National Academy of Sciences 97:8 (2000), pp. 4398–403; K. Woollett, H. J. Spiers and E. A. Maguire, ‘Talent in the Taxi: A Model System for Exploring Expertise’, Philosophical Transactions of the Royal Society B: Biological Sciences 364:1522 (2009), pp. 1407–16. • 27. M. S. Terlecki and N. S. Newcombe, ‘How Important Is the Digital Divide? The Relation of Computer and Videogame Usage to Gender Differences in Mental Rotation Ability’, Sex Roles 53:5–6 (2005), pp. 433–41. • 28. R. J. Haier, S. Karama, L. Leyba and R. E. Jung, ‘MRI Assessment of Cortical Thickness and Functional Activity Changes in Adolescent Girls Following Three Months of Practice on a Visual-Spatial Task’, BMC Research Notes 2:1 (2009), p. 174. • 29. S. Kühn, T. Gleich, R. C. Lorenz, U. Lindenberger and J. Gallinat, ‘Playing Super Mario Induces Structural Brain Plasticity: Gray Matter Changes Resulting from Training with a Commercial Video Game’, Molecular Psychiatry 19:2 (2014), p. 265. • 30. N. Jaušovec and K. Jaušovec, ‘Sex Differences in Mental Rotation and Cortical Activation Patterns: Can Training Change Them?’, Intelligence 40:2 (2012), pp. 151–62. • 31. A. Clark, ‘Whatever Next? Predictive Brains, Situated Agents, and the Future of Cognitive Science’, Behavioral and Brain Sciences 36:3 (2013), pp. 181–204; E. Pellicano and D. Burr, ‘When the World Becomes “Too Real”: A Bayesian Explanation of Autistic Perception’, Trends in Cognitive Sciences 16:10 (2012), pp. 504–10. • 32. D. I. Tamir and M. A. Thornton, ‘Modeling the Predictive Social Mind’, Trends in Cognitive Sciences 22:3 (2018), pp. 201–12. • 33. A. Clark, Surfing Uncertainty: Prediction, Action, and the Embodied Mind (New York, Oxford University Press, 2015); Clark, ‘Whatever Next?’; D. D. Hutto, ‘Getting into Predictive Processing’s Great Guessing Game: Bootstrap Heaven or Hell?’, Synthese 195:6 (2018), pp. 2445–8. • 34. The Invisible Gorilla, http://www.theinvisiblegorilla.com/videos.html (accessed 4 November 2018). • 35. L. F. Barrett and J. Wormwood, ‘When a gun is not a gun’, New York Times, 17 April 2015, https://www.nytimes.com/2015/04/19/opinion/sunday/when-a-gun-is-not-a-gun.html (accessed 4 November 2018). • 36. Kessler et al., ‘Brain Oscillations and Connectivity in Autism Spectrum Disorders (ASD)’. • 37. E. Hunt, ‘Tay, Microsoft’s AI chatbot, gets a crash course in racism from Twitter’, Guardian, 24 March 2016, https://www.theguardian.com/technology/2016/mar/24/tay-microsofts-ai-chatbot-gets-a-crash-course-in-racism-from-twitter (accessed 4 November 2018); I. Johnston, ‘AI robots learning racism, sexism and other prejudices from humans, study finds’, Independent, 13 April 2017, https://www.independent.co.uk/life-style/gadgets-and-tech/news/ai-robots-artificialintelligence-racism-sexism-prejudice-bias-language-learn-from-humans-a7683161.html (accessed 4 November 2018). • 38. Y. LeCun, Y. Bengio and G. Hinton, ‘Deep Learning’, Nature 521:7553 (2015), p. 436; R. D. Hof, ‘Deep learning’, MIT Technology Review, https://www.technologyreview.com/s/513696/deep-learning (accessed 4 November 2018). • 39. T. Simonite, ‘Machines taught by photos learn a sexist view of women’, Wired, 21 August 2017, https://www.wired.com/story/machines-taught-by-photos-learn-a-sexistview-of-women (accessed 4 November 2018). • 40. J. Zhao, T. Wang, M. Yatskar, V. Ordonez and K. W. Chang, ‘Men Also Like Shopping: Reducing Gender Bias Amplification Using Corpus-Level Constraints’, arXiv:1707.09457, 29 July 2017. • 41. R. I. Dunbar, ‘The Social Brain Hypothesis’, Evolutionary Anthropology: Issues, News, and Reviews 6:5 (1998), pp. 178–90. • 42. U. Frith and C. Frith, ‘The Social Brain: Allowing Humans to Boldly Go Where No Other Species Has Been’, Philosophical Transactions of the Royal Society B: Biological Sciences 365:1537 (2010), pp. 165–76.