Шрифт:
Интервал:
Закладка:
Рост волос и ногтей – разве это не пример самообновления? Для этого нужно задействовать стволовые клетки. Выдерните волос, и в его нижней части окажется скопление клеток. Часть из них – стволовые клетки, которые могут развиться во взрослые клетки. Стволовые клетки прячутся в луковице фолликула. В процессе миграции на поверхность кожи под воздействием факторов, вырабатываемых их окружением, происходит дифференциация этих клеток. И наоборот, человеческие эмбрионы являются источником эмбриональных стволовых клеток (ЭС) человека. У них сильно выраженная изменчивость, они являются тотипотентными и в зависимости от стимула способны развиться во взрослую клетку любого типа, что может привести к формированию новой личности! Однако их нужно выделить из эмбриона перед имплантацией – то, что остается послеоплодотворения in vitro. Выделение стволовых клеток вызывает неоднозначную реакцию, и в ряде стран эти процедуры либо запрещены, либо носят ограниченный характер. Ученым, которые хотят работать с такими клетками, приходится переезжать в страны, где такие эксперименты разрешены. В Германии ЭС-клетки, видимо, были выделены до 2007 г. Плюрипотентные стволовые клетки развиваются в несколько различных органов или типов клеток, например в печень. Затем существуют мультипотентные стволовые взрослые клетки, которые заменяют клетки в органах для их регенерации и могут вырасти только в определенные клетки. Стволовые клетки локализуются в эпителиальных тканях, как указывалось выше, костном мозге или пуповинной крови. Сердце и головной мозг не слишком активно регенерируются, в тканях этих органов практически нет стволовых клеток. Гемопоэтические стволовые клетки (ГСК), выделяемые из костного мозга или крови, можно трансплантировать пациентам; они весьма эффективны при лечении определенных видов лейкемии. Стволовые клетки также обсуждаются в связи с развитием рака, но до сих пор остается открытым вопрос, задействованы ли они в этом процессе и какая роль им отводится в терапии рака. Их предпочтительнее называть не «опухолевые стволовые клетки», а «инициаторы опухоли» или «клетки-предшественники». Это удивительно, но некоторые родители десятки лет хранят клетки пуповинной крови новорожденных в качестве возможной «медицинской страховки» для лечения заболеваний, которые могут развиться у ребенка в течение жизни.
Прорыв в исследованиях стволовых клеток у людей произошел в связи с появлением «коктейля». Его ингредиенты дают возможность перепрограммировать дифференцированные зрелые клетки, чтобы они стали стволовыми. Мечта человечества осуществилась, поскольку этот коктейль способен превратить клетки взрослых мышей в эмбриональные. Этот коктейль может «перепрограммировать» клетки взрослого организма, чтобы можно было «все начать сначала». Все, что нужно для этого коктейля, – набор из четырех белков, которые называются с-Myc, Oct4, Sox2 и Kif4. Все они относятся к транскрипционным факторам, и каждый из них может регулировать большое количество генов – несколько сотен. Факт превращения зрелых клеток в эмбриональные подтверждается результатами имплантации в организм мыши-самки клеток, обработанных коктейлем, – развивается новая мышиная особь. Это действительно фантастический эксперимент: полностью специализированная (дифференцированная) клетка превращается обратно в эмбриональную, универсальную плюрипотентную клетку. Это вполне возможно, поскольку в каждой клетке, в том числе и в зрелой, присутствуют все гены, но лишь немногие из них активно экспрессируются в силу имеющихся у них клеточных программ. Существует 200 различных программ для 200 различных типов зрелых клеток. Программы омоложения должны быть в состоянии подавить все эти программы и реактивировать все гены, сделать все клетки плюрипотентными. Поскольку четыре фактора «индуцируют» это состояние, такие клетки называются «индуцированными плюрипотентным стволовыми клетками», или сокращенно iPS-клетками. Такие клетки могут запускать процесс заново и превратиться в одну из 200 различных типов клеток организма вследствии действия специфических факторов дифференциации. Простой способ – это поместить iPS-клетки рядом с тканью, которую нужно получить. Например, существующие клетки мышечных тканей способствуют формированию клеток мышечной ткани из iPS-клеток путем секреции факторов, стимулирующих специфические клетки мышечной ткани. Это основа регенеративной медицины.
iPS-система была разработана лауреатом Нобелевской премии японским ученым Синъей Яманакой из Киотского университета. Он систематически проводил исследования с целью выявления факторов, обеспечивающих это изменение, и протестировал 24 фактора в разных комбинациях. В результате было выделено четыре транскрипционных фактора. Ретровирусные векторы переносят гены для факторов в фибробласты кожи человека и активируют несколько сот генов. Транскрипционный фактор c-Myc стимулирует рост клеток, во время которого клетка проходит клеточный цикл и деление. Однако c-Myc также наблюдается во многих опухолевых клетках, при раке головного мозга или раке легких. Изначально его выявили как онкоген ретровирусов, о чем речь шла выше. Таким образом, при дерегуляции данного фактора или его чрезмерной продуктивности клетки могут превратиться в опухолевые. В этом заключается проблема со стволовыми клетками. Они находятся в опасной близости от раковых клеток. Рост опухолевых клеток остановить невозможно. А как остановить рост стволовых клеток? Сначала человек хочет, чтобы клетки росли, а потом стремится прекратить их рост. В настоящее время разрабатываются специальные методы, позволяющие при необходимости определенным образом включать или выключать эти четыре фактора. Кроме того, их необходимо контролировать и следить за тем, чтобы они экспрессировались в правильной дозе. Это снизит риск развития рака.
В 2012 г. Яманака получил Нобелевскую премию за «открытие зрелых клеток, которые можно перепрограммировать и получить плюрипотентные клетки», что означает получение iPS-клеток из дифференцированных клеток взрослого организма. Он разделил эту премию с Джоном Гёрдоном, ученым, представляющим старшее поколение. В 1962 г. Гёрдон трансплантировал клеточные ядра из кишечника лягушки в ее яйцеклетку и в результате получил настоящую лягушку. Как мне хорошо запомнилось, этот эксперимент вызвал скептицизм и даже некоторое неприятие. Позднее он лег в основу клонирования овец, кошек и собак. Все знают о клонированной овечке Долли, самой известной в мире овце, у которой не было отца. В 1996 г. в Шотландии ее клонировал Иэн Уилмут, выделив клетку из вымени шестилетней овцы. Он выделил клеточное ядро и имплантировал его в яйцеклетку без ядра. Так получилась овечка Долли. Однако ее генетическому материалу было уже шесть лет, поэтому теломеры на концах ее хромосом были укороченными, как у старых овец, и процесс омоложения был неполным. В скором времени у Долли развились возрастные заболевания, в частности артрит, и в 2003 г. она умерла. Смерть наступила в результате заражения вирусом овец – ретровирусом, состоящим в близком родстве с вирусом Jaagsiekte Sheep Retrovirus (JSRV), который около 40 млн лет назад способствовал образованию плаценты в организме человека. (Удивительно, что этот ретровирус до сих пор существует!) В конце концов, у Долли было потомство. Легко представить себе Иэна Уилмута в Стокгольме вместе с Яманакой и Джоном Гёрдоном. Рудольф Йениш из Института Уайтхед (Бостон), мой гамбургский друг, с которым я познакомилась много лет назад, помог нам разобраться в механизме перепрограммирования эмбриональных стволовых клеток; за эту работу он был удостоен многих наград.