Шрифт:
Интервал:
Закладка:
Литература
[1] М. Й. Лев, Береза Картузька, Жовтень, № 3, 70–81 (1980).
[2] E. Wigner, The unreasonable effectiveness of mathematics in the natural sciences. Communications in Pure and Applied Mathematics 13, (1960), no. 1, 1–14, DOI: https://doi.org/10.1002/cpa.3160130102.
[3] S. Weinberg. The Quantum Theory of Fields, Vol. I, Cambridge University Press, Cambridge, UK, 1999.
[4] S. Weinberg, Living with Infinities, arXiv preprint (2009).
[5] P. A. M. Dirac, Forms of Relativistic Dynamics. Rev. Mod. Phys., 21, 392–399 (1949).
[6] N. N. Bogolubov, A. A. Logunov, A. I. Oksak and I. T. Todorov, General Principles of Quantum Field Theory. Nauka: Moscow (1987).
[7] F. Lev, Finite Mathematics, Finite Quantum Theory and Applications to Gravity and Particle Theory, arXiv 1104.4647 (2019).
[8] F. Lev, The Problem of Constructing the Current Operators in Quantum Field Theory, arXiv 9508158 (1995).
[9] F. Lev, Exact Construction of the Electromagnetic Current Operator in Relativistic Quantum Mechanics, Ann. Phys. 237, 355–419 (1995).
[10] F. M. Lev, Could Only Fermions Be Elementary? J. Phys., A37, 3287–3304 (2004).
[11] A. M. Polyakov, Decay of vacuum energy, Nucl. Phys. B834, 316–329 (2010).
[12] F. Lev, Cosmological Acceleration as a Consequence of Quantum de Sitter Symmetry, arXiv:1905.02788 (2019).
[13] F. Lev, Cosmological Acceleration as a Consequence of Quantum de Sitter Symmetry, Physics of Particles and Nuclei Letters 17, 126–135 (2020).
[14] F. M. Lev, Symmetries in Foundation of Quantum Theory and Mathematics. Symmetry 12(3), 409 (2020).
[15] S. Vagnozzi, L. Visinelli, P. Brax, A-Ch. Davis and J. Sakstein, Direct detection of dark energy: the XENON1T excess and future prospects. Phys. Rev. D104, 063023 (2021).
[16] E. Aprile, K. Abe, F. Agostini et. al., Search for New Physics in Electronic Recoil Data from XENONnT, arXiv:2207.11330 (2022).
[17] F. Lev, de Sitter Symmetry and Quantum Theory. Phys. Rev. D85, 065003 (2012).
[18] F. M. Lev, Discussion of cosmological acceleration and dark energy, Proceedings to the 25th Workshop What Comes Beyond the Standard Models Bled, July 4_10, 2022, 271–278 (2023); arXiv: 2302.10794, https://doi.org/10.48550/arXiv.2302.10794 (2023).
[19] F. Lev, A New Look at the Position Operator in Quantum Theory, Physics of Particles and Nuclei, 46, 24–59 (2015).
[20] F. Lev, Fundamental Quantal Paradox and its Resolution. Physics of Particles and Nuclei Letters, 14, 444–452 (2017).
[21] F. Lev, Finite Mathematics, Finite Quantum Theory And A Conjecture On The Nature Of Time, Physics of Particles and Nuclei – Springer, 50, 443–469 (2019).
[22] C. Rovelli, Space is blue and birds fly through it, arXiv 1802.02382 (2018).
[23] F. Lev, Finite mathematics as the foundation of classical mathematics and quantum theory. With application to gravity and particle theory. ISBN 978–3–030–61101–9. Springer, https://www.springer.com/us/book/9783030611002 (2020).
[24] F. Lev, Discussion of foundation of mathematics and quantum theory, Open Mathematics, 20, no. 1, 94–107 (2022). https://doi.org/10.1515/math-2022–0011.
[25] А.Д. Сахаров, Барионная Асимметрия Вселенной, Обзорный доклад на конференции посвященной 100-летию А.А. Фридмана. Ленинград, 22–26 июня 1988 г.
[26] F. Lev, A New Look at the Baryon Asymmetry of the Universe. vixra 2012.0154, https://vixra.org/abs/2012.0154, hal-03085905, https://hal.archives-ouvertes.fr/hal-03085905 (2021).
[27] F. Lev, The Problem of Particle-Antiparticle in Particle Theory, Proceedings to the 25th Workshop What Comes Beyond the Standard Models, Bled, July 4–10, 146–161 (2022); https://arxiv.org/abs/2201.13231.235.
[28] A. Einstein, B. Podolsky and N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Physical Review 47, 777_780 (1935).
[29] B. Kayser, On the quantum mechanics of neutrino oscillation, Phys. Rev. D24, 110–116 (1981).
[30] F.Lev, de Sitter symmetry and neutrino oscillations, arXiv: https://arxiv.org/abs/2211.00070.
[31] F. Capozzi, A. Marrone, D.Montanino and A. Palazzo, Neutrino masses and mixings: Status of known and unknown 3ν parameters. Nucl. Phys. B 00, 1–14 (2016).