Шрифт:
Интервал:
Закладка:
Вот несколько хороших заданий для такой игры:
• Назвать делители числа 60 (делителем натурального числа n называют число, на которое n делится без остатка. Самыми простыми ответами будут 10 или 6, над ответами 12, 15 и 4 уже надо подумать).
• Выразить половину математическим языком (ответы по степени возрастания оригинальности: 50 %, 0,5, ½, две четверти или ответ-чемпион: 100: 200).
• Назвать простое число.
Остальное придумайте сами. Лучше всего чередовать вопросы на общую эрудицию с математическими. Игра может быть очень занимательной, важно, как и во всем, не перегибать палку.
Способствует закреплению любого математического материала, нуждающегося в дополнительной проработке, от таблицы умножения до геометрии.
Подобно знаменитой во всем мире телепередаче, сначала на кону небольшие выигрыши, а главный куш ждет победителя в финале. Этот куш не должен выражаться крупной денежной суммой, мы бы рекомендовали не выходить за пределы 20 пенсов, потому что главное тут – азарт. Определитесь с основной темой игры – допустим, это будет таблица умножения, – и начните с самых простых вопросов, за которые полагаются минимальные суммы выигрыша, меньше 1 пенни.
Например, вы объявляете:
– Первый вопрос, одна десятая пенни. Сколько будет 4 умножить на 2?
Ребенок отвечает правильно. Игра продолжается:
– Второй вопрос, полпенни. Сколько будет пятью четыре?
Чтобы страсти накалились по-настоящему, можно после получения ответа голосом ведущего поинтересоваться: «Это ваш окончательный ответ?», а по получении подтверждения провозгласить: «Окончательный ответ – двадцать. И это (пауза) правильный ответ!»
Когда ставки возрастут до 5 или 120 пенсов, ребенку можно предложить «забрать деньги», но скорее всего он предпочтет играть до победного.
Вопрос в финале должен быть из разряда сложных, но посильных, например 7 × 8 или 12 × 9[3]. Ориентируйтесь на уровень ребенка. Ну и, конечно, не забудьте про фирменный трюк при оглашении результата: «Правильный ответ вы услышите… сразу после короткой рекламной паузы, оставайтесь с нами и не переключайтесь!» Играть так играть!
Способствует развитию навыков устного счета.
Вряд ли найдется что-нибудь проще таблицы умножения на 11: 5 × 11 = 55, 8 × 11 = 88. Но что будет, если начать оперировать числами больше 10?
Как быстро умножить в уме 26 на 11? Секрет прост: надо сложить друг с другом первую и вторую цифры двузначного множимого (в нашем случае 2 + 6 = 8), и сумму вставить между ними. Получится 286, это и будет искомое произведение: 26 × 11 = 286.
Попробуем еще раз: сколько будет 61 умножить на 11?
6 + 1 = 7, значит, правильный ответ – 671.
Но погодите радоваться, не все так просто.
Сколько будет 48 умножить на 11?
Если следовать нашей логике, 4 + 8 = 12, подставляем сумму и получаем… 4128. Но этого быть не может!
Конечно, не может. Когда сумма двух цифр двузначного числа больше 10, то единица приплюсовывается к первому знаку. Тут надо быть особенно внимательным: 48 × 11 = 528, это правильный ответ.
Детей этот несложный трюк приводит в восторг. Они чувствуют упоение, потому что неожиданно обретают возможность оперировать в уме большими величинами. Однако не стоит забывать, что всякий раз, показывая ребенку такой «хитрый способ», важно не превращать его в ритуальный танец, а заставить задуматься, почему так происходит.
(И на десерт еще один фокус с числом 11. Можно наглядно продемонстрировать, что на двух руках у вас 11 пальцев. Начинаем считать с левой руки: «Десять, девять, восемь, семь, шесть… (поднимаем правую руку) и здесь пять пальцев. Сколько всего? 6 + 5 = 11!»)
Способствует развитию уверенности в счетных действиях.
Держим руки перед собой, большие пальцы смотрят вверх, мизинцы вниз. Мысленно нумеруем пальцы на обеих руках по возрастающей начиная с шести: большие – это «шестерки», указательные – «семерки», средние – «восьмерки», безымянные – «девятки», мизинцы – «десятки».
Сколько будет 7 × 8? Соединяем «семерку» – указательный на левой руке – с «восьмеркой» – средним на правой (см. рис. ниже). Теперь у нас есть верхние пальцы (2 сомкнутых и те, что выше) и нижние, которые болтаются внизу (или «болтуны» для краткости). Считаем верхние пальцы, их у нас 5, а потом перемножаем «болтунов» на правой (их 3) с «болтунами» на левой (их 2): 3 × 2 = 6. Пять да шесть… получилось 56!
Выясним, сколько будет 6 × 9. Соединяем «шестерку» – большой палец на левой руке – с безымянным-«девяткой» на правой. Опять у нас оказалось 5 верхних пальцев, а если перемножить нижних «болтунов», то получится:
4 × 1 = 4, в итоге пять да четыре… 54!
В XVI веке европейские купцы частенько прибегали к таким «пальцевым счетам», когда им надо было перемножать цифры. Школьникам таблицу умножения полагается заучивать наизусть, но и древний способ может пригодиться.
В этом разделе вы найдете разнообразные математические игры, которыми лучше заниматься дома. Для некоторых из них понадобится кое-что специально обустроить или приобрести (поверхность для граффити, измерительные ленты, магнитный набор для игры в дартс, часы со стрелками), но все это сулит такие возможности для занятий математикой с ребенком, что любые траты и усилия с лихвой окупятся.