litbaza книги онлайнДомашняяИнструменты McKinsey. Лучшая практика решения бизнес-проблем - Пол Н. Фрига

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 7 8 9 10 11 12 13 14 15 ... 42
Перейти на страницу:

Я считаю, что приблизительный анализ невероятно полезен, потому что позволяет получить примерные цифры. Во многих случаях мне просто нужно знать, например, во сколько обойдется идея нового продукта: $5 млн., $50 млн. или $500 млн. А некоторым людям очень трудно с этим свыкнуться. Они думают: «Вот я скажу $50 млн., а вдруг окажется $75 млн.?» Да это для меня не важно! «Но это же ошибка на 50%!» – говорят они. Я отвечаю, что эта цифра гораздо лучше, чем ее полное отсутствие.

Как мы уже говорили, некоторые люди стремятся провести все существующие виды анализа; а другие стараются непременно получить ответ с точностью до четвертого знака после запятой. Нарас Ээчамбади, основатель и СЕО компании Quaero, Inc., которая предоставляет маркетинговые консультации с помощью информационных технологий, знаком с этой ситуацией изнутри:

Я нанимаю много людей с ученым званием, и мне приходится чуть ли не запрещать им рассматривать все модели распределения ошибок в данных. Одно дело, когда речь идет о здравоохранении и ошибка может стоить людям жизни. И совсем другое – маркетинг: мы просто пытаемся подзаработать. Так что давайте не будем долго раскачиваться, а возьмемся за практическую работу, не зацикливаясь на нюансах.

Можно долго повышать точность своих моделей развития, но в итоге этот процесс приносит все меньше пользы или тормозит срок выхода на рынок. Нам нужна не идеальная модель, а просто то, что лучше имеющегося у нас сегодня. Давайте сначала заработаем какие-то деньги, а потом, по ходу дела, будем совершенствовать свою модель.

Еще раз повторим: подавляйте в себе и в своей команде желание излишне увлечься данными, потому что оно будет стоить вам денег и времени.

Применяйте к трудным проблемам метод триангуляции. В геодезии и картографии триангуляция – метод определения точного местоположения неизвестной точки путем выполнения измерений с двух известных. Вы можете прибегнуть к аналогичной технике, когда у вас очень мало информации о проблеме (а в бизнесе так бывает очень часто). В какой-то момент вы столкнетесь с вопросом, который на первый взгляд не имеет ответа. Причины бывают разные: например, нужные данные являются коммерческой тайной вашего злейшего конкурента, или вы идете по совершенно новому пути в своей отрасли, или что-то еще превратило этот вопрос в такой крепкий орешек. Не отчаивайтесь. Скорее всего вы сможете придумать какие-то виды анализа, которые позволят нащупать хотя бы вероятные рамки ответа. Опять-таки, если вы идете в верном направлении и правильно определили примерный порядок величины, скорее всего этого будет достаточно для решения.

Чтобы показать, как применять эту методику, приведем пример бывшего сотрудника McKinsey, работающего сейчас в GlaxoSmithKline, – Пола Кенни. Ему нужно было определить размер потенциального рынка для будущего лекарства против заболевания, которое большинство докторов пока что даже не признает:

Мы рассматриваем расстройство, выражающееся в резко сниженном половом влечении – в основном среди женщин. Оно пока что еще не признано как болезнь. Его определили психиатры, но такой диагноз ставят очень редко; терапевты, наверное, даже не слышали о нем. С точки зрения фармацевтики оно открывает возможность разработки препарата, схожего с виагрой, но для женщин. Пока что информации о таком средстве нет.

Не обескураженный трудностями, Пол стал искать аналогичные ситуации, которые могли бы пролить свет на проблему:

Мы пытались провести какие-то параллели с виагрой для мужчин, ведь здесь есть очевидная связь. Но в основном мы ищем аналогии как с другими половыми расстройствами, так и с тем, что можно назвать проблемами стиля жизни, – скажем, ожирением и другими болезнями. Может быть, эти аналогии пригодятся при составлении экономического обоснования необходимости разработки препарата.

Найдя полезные аналогии, Пол стал искать, какие глубокие выводы можно из них сделать:

Одно из препятствий для исследований – нежелание пациентов признать, что у них есть это расстройство. Многие ли станут говорить об этом со своим врачом? Пока что никто не поднимает эту тему, так что ничью историю болезни нельзя взять как пример. Конечно, до появления виагры гораздо меньше мужчин обращались к врачу по поводу нарушений эрекции. Относятся ли женщины к этой стороне своей жизни так же, как мужчины, – все еще открытый вопрос.

Если же взять психический аспект, то можно провести параллель с ожирением: пациентов неудержимо тянет к еде, или они едят по привычке, или им только кажется, что они хотят есть; но многие ли признают, что их ожирение – психическое расстройство?

Чтобы применить метод триангуляции для получения возможных цифр, мы прибегаем к различным аналогиям. Вряд ли мы угадаем точные цифры, но мы надеемся рассчитать хотя бы приблизительные.

Как видите, Пола вовсе не беспокоит, что он никогда не придет к «самому правильному» ответу. Он просто пытается установить верхний и нижний предел размеров предполагаемого рынка, так как этого диапазона будет достаточно, чтобы решить, заниматься ли этим проектом.

Указания по внедрению

Разрабатывая свой анализ, помните о его конечном продукте: своем рабочем плане. Полный рабочий план включает все вопросы и подвопросы, которые были определены при структурировании начальной гипотезы. По каждому из них вы должны перечислить следующие элементы:

– ваши предположения относительно ответа;

– виды анализа, которые должны подтвердить или опровергнуть эти предположения (в порядке приоритетности);

– данные, которые нужно проанализировать;

– вероятные источники данных (например, результаты переписи населения, проведения фокус-групп, интервью);

краткое описание вероятного результата данного этапа анализа;

– имя сотрудника, ответственного за данный этап (вы или участник вашей команды);

– сроки получения результатов.

Оформление плана не обязательно должно быть красивым или формализованным. Подойдет и запись от руки, главное, чтобы она была разборчивой.

В качестве примера вернемся еще раз к Acme Widgets. В предыдущей главе ваша команда как раз закончила составлять дерево вопросов. Мы детализировали одну из ветвей этого дерева, а именно подвопрос «Можем ли мы осуществить нужные изменения?», разделив его на еще более мелкие подвопросы, требующие ответов «да» или «нет». В табл. 2-1 показан возможный рабочий план по изучению этой ветви.

Следуя приведенному выше списку элементов разработки анализа, мы начинаем с записи главного вопроса и предположительного ответа. (Мы предпочитаем записывать ответ сразу после вопроса, хотя его вполне можно поместить в отдельном столбце.) Определяющий вопрос размещается, естественно, наверху. Под ним сделайте отступ и перечислите подвопросы, а затем сделайте то же самое с под-подвопросами и т.д. Таким образом, за вопросом «Требует ли новый процесс специального оборудования?» идет подвопрос «Если новый процесс требует специального оборудования, можем ли мы его приобрести?».

1 ... 7 8 9 10 11 12 13 14 15 ... 42
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?