litbaza книги онлайнДомашняяВремя переменных. Математический анализ в безумном мире - Бен Орлин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 8 9 10 11 12 13 14 15 16 ... 63
Перейти на страницу:

– Мистер Холмс, – говорит он, – речь идет о деле чрезвычайной важности, и я умоляю вас применить все свои способности, чтобы раскрыть эту тайну!

Время переменных. Математический анализ в безумном мире

Несколько часов спустя Шерлок Холмс и доктор Ватсон крадутся по «бурой торфяной равнине»[15] и натыкаются на первую подсказку: «вьющуюся черной лентой тропинку. Посередине, на сырой земле, четко виднелись отпечатки велосипедных колес». Именно в этот момент Холмс пускает в ход классический дедуктивный метод:

Эти следы, как вы сами можете убедиться, ведут от школы.

– Или по направлению к школе.

– Нет, мой дорогой Ватсон. Отпечаток заднего колеса всегда глубже, потому что на него приходится бо́льшая тяжесть. Вот видите? В нескольких местах он совпал с менее ясным отпечатком переднего и продавил его. Нет, велосипедист, несомненно, ехал от школы.

Какие достижения в физике! Какие гениальные способности к геометрии! Есть только одна проблема, которую маскирует сладкоголосая проза и которую показывает самая простая схема.

Время переменных. Математический анализ в безумном мире

Здесь мы видим более толстую линию, пересекающую более тонкую. Понятно ли из этого, каким путем ехал велосипед? Увы, нет, потому что Холмс допустил нехарактерную для него ошибку. След заднего колеса всегда пересекает след переднего. Это не дает никакой подсказки по поводу направления, но является простым следствием особенностей конструкции велосипеда, где переднее колесо может поворачиваться, тогда как заднее остается закрепленным.

Как Холмс мог так опростоволоситься? «Возможно, – предполагает профессор математики Эдвард Бендер, – он недавно принял очередную дозу опиума». Кто-то может обвинить сэра Артура Конан Дойля, но я считаю, Холмс должен нести ответственность за свои ошибки, как и любой вымышленный персонаж.

К счастью для герцога, существует точный и элегантный метод выяснить, в каком направлении двигался велосипед, по оставленным им следам. Этот метод основывается на простом, но действенном понятии дифференциального анализа – касательной.

Время переменных. Математический анализ в безумном мире

Слово «касательная» происходит от латинского tangere («касаться», «трогать»), как и слова tangible («осязаемый», «ощутимый») и «танго»; все эти слова связаны с проявлениями нежности и прикосновениями. В математике касательная совпадает с кривой в одной точке. Так она на какое-то мимолетное мгновение принимает относящееся к конкретному моменту направление кривой, ее производную.

Например, если кривая изображает путь машины, то касательная будет указывать направление света фар.

Или, для более наглядной демонстрации, привяжите веревку к камню, раскрутите его над головой и подождите, пока веревка порвется. Камень полетит по прямой: касательная – это его путь в момент разрыва.

Время переменных. Математический анализ в безумном мире

А что же насчет велосипеда? Поскольку заднее колесо закреплено на раме, в любой отдельно взятый момент оно гонится за передним. Другими словами, его направление в конкретный момент движения указывает туда, где находится переднее колесо.

Время переменных. Математический анализ в безумном мире

Давайте проверим этот факт при помощи приведенной ранее загадки. Без каких-либо подсказок о глубине следа можем ли мы определить, где отпечаток переднего колеса?

Время переменных. Математический анализ в безумном мире

Элементарно, мой дорогой Холмс! Просто найдите момент вдоль одной из линий, когда касательная указывает в пространство, в направлении, куда велосипед никогда не ехал. Могло ли заднее колесо повернуться туда? Никогда! Оно всегда повторяет поведение переднего колеса. Таким образом, линия с направленными вовне касательными должна принадлежать переднему колесу.

Время переменных. Математический анализ в безумном мире

Теперь вопрос на 6000 фунтов – такое вознаграждение назначил герцог в рассказе: в каком же направлении двигается велосипед?

Есть только два возможных варианта. Во-первых, предположим, что велосипед двигается слева направо. Проведем соответствующие касательные для заднего колеса, продлив их до тех пор, пока они не пересекутся со следом переднего.

Время переменных. Математический анализ в безумном мире

Расстояние от заднего до переднего колеса вдоль касательной должно соответствовать длине велосипеда. Но здесь это расстояние меняется от точки к точке. Нам остается только заключить, что во время своего путешествия велосипед менял длину, как двухколесная игрушка на пружине. Такой велосипед должен бы принадлежать ездоку, не имеющему себя равных в ловкости и обладающему сомнительным здравомыслием.

В «Случае в интернате» есть подходящий комментарий:

– Холмс! – воскликнул я. – Это неправдоподобно!

– Браво! – сказал он. – Вывод исчерпывающий. В моем изложении событий есть что-то неправдоподобное, следовательно, я допустил ошибку… Где же я ошибаюсь?

В нашем случае ошибка совершенно ясна. Мы не рассмотрели альтернативу – ведь велосипед мог двигаться справа налево.

Время переменных. Математический анализ в безумном мире

Ага! Эти касательные, к счастью, одной длины. Они говорят о велосипеде прочной конструкции, вполне правдоподобном. Значит, мы можем прийти к выводу, что велосипед двигался в этом направлении.

1 ... 8 9 10 11 12 13 14 15 16 ... 63
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?