Шрифт:
Интервал:
Закладка:
Второе начало термодинамики гласит, что самопроизвольная передача тепла от более холодного тела более горячему невозможна без каких-либо изменений системы. Или, в обобщенной формулировке, которую сам Планк сформулировал в своей диссертации, которую он писал в Мюнхенском университете в 1879 году, «процесс передачи тепла не может быть полностью обращен какими бы то ни было средствами»[103]. Второе начало не только говорит о невозможности создания вечного двигателя, но и определяет понятие, которое предшественник Планка, профессор Рудольф Клаузиус, назвал энтропией: поскольку при выполнении любой работы происходит рассеяние энергии, выделяющейся в виде тепла, – и это тепло невозможно собрать в организованном, пригодном для использования виде, – Вселенная должна постепенно изменяться в направлении все более случайного состояния. Из этой концепции все более увеличивающегося беспорядка следует, что Вселенная развивается однонаправленным и необратимым образом; второе начало термодинамики есть физическое выражение того, что мы называем временем. Однако уравнения механики – в рамках науки, которая называется теперь классической физикой, – теоретически допускают развитие Вселенной в любом направлении, как вперед, так и назад. «Таким образом, – сетовал один видный немецкий химик, – в чисто механическом мире не может быть “до” и “после”, как в мире, где мы живем; иначе дерево могло бы превратиться в побег, а затем в семя, бабочка – в гусеницу, старик – в ребенка. Механистическая доктрина никак не объясняет тот факт, что на самом деле этого не происходит, да такое объяснение и не может быть дано ввиду некоторых фундаментальных свойств уравнений механики. Фактическая необратимость явлений природы доказывает, таким образом, наличие процессов, которые нельзя описать уравнениями механики. Тем самым выносится приговор научному материализму»[104][105]. За несколько лет до этого Планк, что было для него характерно, высказался более лаконично: «Последовательное применение второго закона [по Планку, признание роста энтропии в качестве абсолютного закона]… несовместимо с предположением о существовании атомов конечного размера»[106].
Значительная часть затруднений была связана с тем, что в то время атомы нельзя было прямо измерить в эксперименте. Они были концепцией, полезной в химии, в которой их использовали для объяснения того, почему некоторые вещества – элементы – соединяются друг с другом с образованием других веществ, но сами не могут быть разложены химическими методами. Атомы, по-видимому, объясняли, почему газы ведут себя именно так, а не иначе, – заполняют любой сосуд, в который их помещают, и оказывают равное давление на все стенки такого сосуда. Их использовали и для объяснения того поразительного открытия, что любой элемент, нагреваемый в пламени лабораторной горелки или испаряемый электрической дугой, окрашивает испускаемый свет, причем при разложении этого света призмой или дифракционной решеткой спектр неизменно разбивается на последовательность характерных ярких полос или линий. Однако еще в 1894 году, когда Роберт Сесил, третий маркиз Солсбери, канцлер Оксфордского университета и бывший[107] премьер-министр Англии, перечислял нерешенные задачи науки в своей председательской речи на заседании Британской ассоциации, вопрос о том, являются ли атомы реальными объектами или лишь удобной условностью и какова может быть их скрытая структура, по-прежнему оставался открытым:
Что есть атом каждого элемента, представляет ли он собою движение, предмет, вихрь или точку, обладающую инерцией, существуют ли пределы его делимости и, если они существуют, как налагаются такие пределы, окончателен ли длинный перечень элементов и имеют ли какие-либо из них сколько-нибудь общее происхождение, – все эти вопросы остаются так же окруженными мраком, как и прежде[108].
Именно так – выбирая между возможными вариантами – и работает физика; именно так работают все точные науки. Химик Майкл Полани, друг Лео Сциларда, исследовал методы работы науки в последние годы своего пребывания в Манчестерском университете и в Оксфорде. Он установил, что традиционная организация науки сильно отличается от представлений большинства не связанных с наукой людей. Он назвал ее «республикой науки»[109], сообществом свободно сотрудничающих мужчин и женщин, «чрезвычайно упрощенным примером свободного общества»[110]. Не все специалисты по философии науки – области, которой стал заниматься Полани, – были с ним согласны. Даже сам Полани иногда называл науку «ортодоксией». Но его республиканская модель науки сильна тем же, чем бывают сильны успешные научные модели: она объясняет взаимосвязи, которые не были понятны до нее.
Полани задавал прямые вопросы. Как избирают ученых? Какую присягу они принимают? Кто направляет их исследования – выбирает задачи, которые следует изучать, утверждает планы экспериментов, оценивает значение результатов? Кто решает, что́ соответствует научной «истине» при окончательном анализе этих результатов? Вооружившись этими вопросами, Полани отступил на шаг и рассмотрел науку извне.
За великой конструкцией, которая всего за три столетия начала преобразовывать весь мир человечества, лежала основополагающая приверженность натуралистическому взгляду на жизнь. В другие эпохи и в других местах господствовали иные воззрения – магические или мифологические. Дети обучались натуралистическому мировоззрению, когда учились говорить, когда учились читать, когда шли в школу. «Миллионы ежегодно расходуются на культивирование и распространение науки теми же самыми органами государственной власти, – написал однажды Полани, раздраженный теми, кто упорно не хотел понимать его идей, – которые не дадут ни гроша на развитие астрологии или колдовства. Другими словами, наша цивилизация глубоко привержена определенным представлениям о природе вещей; представлениям, отличным, например, от тех, которым были привержены древнеегипетская или ацтекская цивилизации»[111].
Большинство молодежи познает лишь ортодоксальные положения науки. Они выучивают «общепринятые доктрины, мертвые письмена»[112]. Некоторые, продолжающие образование в университетах, заходят дальше и познают начала научного метода. Они используют в повседневных исследованиях экспериментальные доказательства. Они открывают для себя «неопределенность и вечную временность»[113] положений науки. Они начинают вдыхать в нее жизнь.
Но это еще не значит стать ученым. Чтобы стать ученым, считал Полани, необходимо «полное посвящение»[114]. Такое посвящение дается «тесными личными связями с взглядами и практиками заслуженного наставника»[115]. Практика науки сама по себе не есть наука; это искусство, передаваемое от