Шрифт:
Интервал:
Закладка:
Тем временем другие ученые начали использовать понятие перенормировки для того, чтобы выделить возможные теории поведения частиц, которые могут быть описаны законами квантовой электродинамики. Дайсон первым понял, что перенормировка может стать критерием оценки. С практической точки зрения при помощи теории, к которой применима перенормировка, можно было производить расчеты. «Обратите внимание, как хитро ученые обернули все в свою пользу, — заметил физик и историк Сильван Швебер. — Расхождения, которые прежде считались огромной помехой, теперь стали ценным преимуществом». Гелл-Манн и молодые физики-теоретики пользовались этой концепцией с большим успехом. «Нам необходим определяющий принцип — такой, как перенормировка, — чтобы отделить квантовую теорию поля, имеющую отношение к реальному миру, от бесконечного множества других квантовых теорий», — заявил Стивен Вайнберг годами позже, понимая, однако, что здесь напрашивается вопрос «почему». Почему он решил, что правильные теории можно будет просчитать? Почему природа должна облегчать жизнь физикам? Фейнман испытывал почти те же сомнения, что и Дирак, поэтому продолжал называть перенормировку «игрой в наперстки», «черт-те чем» и «надувательством».
К началу 1960-х годов он, казалось, потерял интерес к малоизученным областям физики высоких энергий. К тому времени в квантовой электродинамике настало затишье: она считалась проблемой решенной. На практике ее начали применять в физике твердых тел и прикладных сферах, например электротехнике; так, благодаря квантовой механике появился мазер — прибор, излучающий когерентные радиоволны высокой интенсивности в СВЧ-диапазоне, и его последователь — лазер. На некоторое время Фейнман погрузился в изучение теории мазеров, заложив ее основы при помощи своих интегралов по траекториям. Он также упорно работал над другой проблемой физики твердого тела — проблемой полярона, или электрона, движущегося в кристалле. Электрон искажает решетку кристалла и взаимодействует со своим полем деформации. Фейнман понял, что это типичный образец взаимодействия частицы с собственным полем. И снова его диаграммы и интегралы по траекториям нашли плодотворное применение. Но все это была работа незначительная; ее нельзя было назвать чем-то особенным, уникальным открытием физика, которого уже считали легендой (хотя Нобелевскую премию из года в год вручали все более молодым ученым, гораздо моложе Фейнмана).
Он никак не мог найти достойную тему для исследований. Его гонорар в Калтехе подняли до двадцати тысяч долларов, и он стал самым высокооплачиваемым сотрудником кафедры. Он благодушно замечал, что для физика-теоретика это многовато, и пора бы ему сделать что-то серьезное, заняться наконец «настоящей работой». Ему полагался год академического отпуска, но он не хотел путешествовать. Его друг Макс Дельбрюк — физик, занявшийся генетикой, — пытался заманить других теоретиков в свою группу в Калтехе, утверждая, что все самые интересные исследования теперь связаны с молекулярной биологией. И Фейнман решил: вместо того чтобы ехать в другую страну, он сменит поле деятельности.
В биологии не было разделения на теоретиков и практиков, так что лето 1960 года началось для Фейнмана с освоения азов лабораторной работы. Он учился выращивать штаммы бактерий на блюдцах, всасывать пипетками мельчайшие капли раствора, выявлять мутации и считать бактериофаги — вирусы, инфицирующие бактерии. Поначалу он проводил эксперименты лишь для того, чтобы овладеть техникой. В лаборатории Дельбрюка изучали главным образом генетику микроскопических живых существ, представлявших собой крошечные эффективные механизмы воспроизводства ДНК. Когда Фейнман прибыл в полуподвальный этаж Черч-Холла, где находилась лаборатория, самым популярным вирусом для изучения был бактериофаг Т4, растущий на обычном штамме кишечной палочки.
С тех пор как Джеймс Уотсон и Фрэнсис Крик описали структуру ДНК — молекулы, несущей генетический код, — прошло менее десяти лет. Хотя официально эту систему хранения информации называли кодом, генетики визуализировали ее как карту и схему, печатный текст и запись на пленке, — механика этого процесса оставалась неясной. Было известно, что мутации изменяют последовательность нуклеотидов ДНК, но никто не мог понять, каким образом развивающийся организм считывает измененную карту или запись. Существует ли некий механизм биологического копирования, монтажа и склейки? В подвальной лаборатории Фейнман начал чувствовать себя как дома. Здесь все вокруг состояло из материи, и его это успокаивало. Он был хорошо знаком с сущностью оценочных экспериментов: по его словам, их целью было «понять, что известно, а что — еще нет». Он сразу разобрался, как работает центрифуга и как с помощью ультрафиолетового поглощения можно узнать, сколько ДНК осталось в пробирке. Биоматериал в экспериментах вел себя более беспорядочно: все росло, двигалось, и в точности повторить опыт оказывалось сложно.
Фейнман сосредоточился на изучении конкретной мутации вируса Т4, называемой rII. Этот мутирующий вирус обладал одним ценным свойством: он изобильно произрастал на штамме кишечной палочки B, но не рос на штамме K. Исследователь подсаживал бактерию штамма К к вирусу-мутанту и наблюдал, возникнут ли какие-либо признаки Т4. Если вирус появлялся, это могло означать одно: что-то случилось с мутацией rII, предположительно, она вернулась к своему исходному состоянию. Обратная мутация была довольно редким явлением; если же такое происходило и вирус снова начинал расти на бактерии штамма K, его можно было обнаружить с большой точностью — один на миллиард. Фейнман сравнил появление обратной мутации Т4 с рождением в Китае человека со слоновьими ушами, фиолетовыми пятнами и без левой ноги. Он собирал эти вирусы, изолировал их и снова подселял к бактериям штамма В, чтобы проверить, как они растут.
В некоторых блюдцах творилось нечто странное. Среди нормальных обратно мутировавших Т4 Фейнман обнаружил фаги, растущие не так, как нужно. Он назвал их «идиотскими r». Что происходит на уровне ДНК, когда они возникают? Об этом можно было только догадываться. У Фейнмана было две теории: либо участок мутации rII в нити ДНК претерпел второе, дополнительное изменение, либо вторая мутация возникла на другом участке, но каким-то образом частично «обнулила» первую.
Инструментов прямого изучения генетической последовательности «буква за буквой», основная пара за основной парой, попросту не существовало. Но, упорно скрещивая «идиотскую» мутацию с исходным вирусом, Фейнман сумел доказать, что его вторая догадка оказалась верной: речь шла о взаимодействии двух мутаций, произошедших на соседних участках ДНК. Более того, он продемонстрировал, что характер обоих изменений был схожим: это были мутации rII. Таким образом, он обнаружил новый феномен — мутации, подавляющие друг друга внутри одного гена. Его друзья в лаборатории назвали их фейнтронами и попытались убедить Фейнмана опубликовать материалы своих исследований в научном журнале. Впоследствии аналогичное открытие сделали другие ученые; оно получило название внутригенной супрессии. Но Фейнман не смог предложить достойного объяснения своей теории. Биологи Калтеха не имели четкого представления о том, как читать генетический код и как информация, записанная в ДНК, трансформируется в биологически активные белки и более сложные организмы.