Шрифт:
Интервал:
Закладка:
Теперь взглянем на некоторые реальные результаты для выбранных объемов партий и выборок. На рис. 57–60 показана доля красных бусин в биномиальных выборках и остатках для выбранных значений N и n (данные были любезно подготовлены моим другом Бенджамином Теппингом на его компьютере). На самом деле выборка и оставшаяся часть – это выборки из одной и той же партии. На каждом графике представлены 100 выборок. Графики явно демонстрируют нулевую корреляцию между выборкой и остатком. Но чем больше выборка, тем лучше оценка доли красных бусин в выборках и остатках. Так, рис. 60 для выборки n = 1000 и остатка N – n = 9000 показывает, что большая выборка обеспечивает хорошую оценку как остатка, так и всей совокупности (выборка плюс остаток – в нашем случае чаша с красными и белыми бусинами), даже несмотря на то, что выборка и остаток некоррелированы. Удивительная особенность статистической теории состоит в том, что она позволяет нам по одной-единственной выборке, если та достаточно велика, вычислить размер поля, которое покрывает на рис. 57–60 в среднем 95 % (например) возникших точек. Таким образом, выборочная теория обеспечивает оценки остатков и всех партий, а также дает значения стандартных ошибок этих оценок[118].
Рис. 57. N = 50, n = 20. Здесь выборка и остаток близки по объему, 20 и 30 соответственно. График показывает отсутствие корреляции между долей красных бусин в выборке и долей красных бусин в остатке
Рис. 58. N = 600, n = 20. Здесь вариации в доле красных бусин в остатке явно намного меньше, чем в выборке. Причина в том, что остаток имеет объем N – n = 600 – 20 = 580 , что многократно превышает объем выборки. Здесь снова корреляция между долей красных бусин в выборке и долей красных бусин в остатке, по-видимому, равна нулю
Рис. 59. N = 600, n = 200. Здесь видно, что происходит, когда мы увеличиваем объем выборки до 200 и уменьшаем объем остатка до 400. Этот график, как и раньше, иллюстрирует нулевую корреляцию между долей красных бусин в выборке и долей красных бусин в остатке
Рис. 60. N = 10 000, n = 1000. Опять никакой корреляции
George Barnard, «Sampling inspection and statistical decisions», Journal of the Royal Statistical Society, ser. B, vol. 16 (1954): 151–171 (Discussion of Mood's theorem).
David Durand, «Stable Chaos, General Learning Press, 1971. (См. стр. 234.)
A. Hald, «The compound hypergeometric distribution and a system of single sampling plans based on prior distributions and costs», Technometrics 2 (1960): 275–340. (Discussions on prior distributions).
Statistical Theory of Sampling Inspection by Attributes, Academic Press, 1981.
H. Hamaker, «Economic principles in industrial planning problems: a general introduction», Proceedings of the International Statistical Conference (India, 1951) 33, pt. 5 (1951): 106–119.
«Some basic principles of sampling inspection by attributes», Applied Statistics (1958): 149–158. (Interesting discussion of various approaches).
I. David Hill, «The economic incentive provided by sampling inspection», Applied Statistics 9, (1960): 69–81.
«Sampling inspection in defense specification DEF – 131», «Journal of the Royal Statistical Society, ser. A, vol. 125 (1962): 31–87.
Alexander Mood, «On the dependence of sampling inspection plans upon population distributions», Annals of Mathematical Statistics 14 (1943): 415–425.
Joyce Orsini, «Simple rule to reduce total cost of inspection and correction of product in state of chaos», Ph. D. dissertation, Graduate School of Business Administration, New York University, 1982.
J. Sittig, «The economic choice of sampling systems in acceptance sampling», Proceedings of the International Statistical Conference (India, 1951) 33, pt. 5 (1951): 51–84.
P. Thyregod, «Toward an algorithm for the minimax regret single sampling strategy», Institute of Mathematical Statistics, University of Copenhagen, 1969.
B.L. van der Waerden, «Sampling inspection as a minimum loss problem,» Annals of Mathematical Statistics 31 (1960): 369–384.
G. Wetherill, Sampling Inspection and Quality Control, Methuen, London, 1969. (Дает прекрасное сжатое резюме.)
S. Zacks, The Theory of Statistical Inference, Wiley, 1971. Есть русский перевод: С. Закс. Теория статистического вывода: Пер. с англ. М.: Мир, 1975.
Исследования в области статистической теории и ее методов неизбежно связаны с математикой, с высокой наукой и носят абстрактный характер, они требуют времени, некоторого самопожертвования и доступа к хорошей математической и статистической библиотеке. Важность продолжения таких исследований чрезвычайно велика, хотя это не всегда очевидно для тех, чьи интересы сконцентрированы на практических аспектах применения уже существующих теорий. За пределами исследований прикладное применение достижений превращается в рутину, попадая в руки людей, которые не понимают назначения инструментов, с которыми они работают, и не взаимодействуют с теми, кто постиг их суть… Парадокс в том, хотя это и соответствует опыту минувших столетий, что выдающиеся ученые выполняют работу, которую могли бы делать другие, менее способные люди, в то время как реальная ценность их наиболее важных работ не получает официального признания.