litbaza книги онлайнДомашняяВечность. В поисках окончательной теории времени - Шон Кэрролл

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 124 125 126 127 128 129 130 131 132 ... 161
Перейти на страницу:

Однако если это верно, то во Вселенной происходит примечательнейшая штука: несмотря на очевидную симметрию между «расширением» и «сжатием», очень скоро расширяющиеся области начинают одерживать верх. А причина проста: расширяющиеся участки увеличиваются в объеме, тогда как сжимающиеся становятся меньше. Более того, сжимающиеся области не остаются в плотном, сжатом состоянии навечно. В экстремальном случае, когда материя коллапсирует в черную дыру, в какой-то момент начинается испарение черных дыр. Это означает, что, взяв начальные условия, содержащие и расширяющиеся и сжимающиеся области, и подождав достаточно долго, мы в конце концов остаемся все с тем же результатом — пустым пространством, причем энтропия по ходу процесса непрерывно увеличивается.[253]

В каждом из этих примеров важным фундаментальным свойством является динамическая природа пространства—времени в общей теории относительности. В фиксированном, абсолютном пространстве—времени (таком, каким его полагал Больцман) имеет смысл представлять себе Вселенную как пространство, заполненное газом при одинаковых температуре и плотности, — повсеместное термодинамическое равновесие. Это высокоэнтропийное состояние, и естественно предполагать, что в указанных условиях Вселенная «должна» быть именно такой. Неудивительно, что Больцман считал, что наша наблюдаемая Вселенная может быть просто статистической флуктуацией подобной конфигурации.

Вечность. В поисках окончательной теории времени

Рис. 13.7. Начальные условия (внизу) во Вселенной с расширяющимися и сжимающимися областями. Размер расширяющихся областей увеличивается, но они становятся все более разреженными. Сжимающиеся области сначала уплотняются, но в какой-то момент начинают испаряться в окружающую пустоту.

Однако общая теория относительности все ставит с ног на голову. Газ при постоянной плотности в статическом пространстве—времени не может быть решением уравнения Эйнштейна, поскольку Вселенная должна либо расширяться, либо сжиматься. До того как Эйнштейн высказал свои идеи, казалось логичным начинать мысленные эксперименты, фиксируя среднюю плотность материи или же общий объем рассматриваемой области. Но в общей теории относительности невозможно запросто зафиксировать такие параметры, так как они проявляют тенденцию к изменению с течением времени. Один из способов воспринимать это — уяснить, что общая теория относительности всегда предоставляет нам путь для увеличения энтропии любой конкретной конфигурации: сделайте Вселенную больше и позвольте материи расширяться, заполняя новый объем. Разумеется, конечным состоянием, к которому способен привести этот процесс, может быть только пустое пространство. Именно оно считается «высокоэнтропийным» состоянием в ситуации, когда мы принимаем в расчет также и гравитацию.

Конечно же, ни один из этих аргументов не следует считать нерушимым. Они действительно предлагают ответ, который кажется нам связным, логичным и разумным. И все же это ни в коем случае не окончательное доказательство чего бы то ни было. Заявление о том, что энтропия какой-то системы во Вселенной может увеличиваться за счет того, что ее элементы разлетаются по огромным просторам пространства, кажется вполне безопасным. Но вывод из него — пустое пространство представляет собой состояние с наибольшей энтропией — это всего лишь умозрительное заключение. Гравитация — сложная штука, мы очень многого не знаем о ней, поэтому не следует слишком сильно привязываться ни к одному из существующих спекулятивных сценариев.

Реальный мир

Давайте применим эти идеи к реальному миру. Если высокоэнтропийные состояния — это те, которые выглядят как пустое пространство, то, по всей видимости, наша фактическая наблюдаемая Вселенная должна эволюционировать по направлению к такому состоянию. (Так и есть.)

Не вдаваясь в подробности, мы сказали, что когда объекты коллапсируют под воздействием гравитации, они формируют черную дыру, которая некоторое время испаряется, прежде чем окончательно исчезнуть. Совершенно неочевидно, что так действительно происходит в реальном мире, где мы наблюдаем множество объектов, которые гравитация удерживает вместе, и эти объекты даже приближенно не напоминают черную дыру: планеты, звезды, даже галактики.

Однако реальность такова, что все эти системы в конце концов распадутся, — нужно лишь подождать достаточно долго. Наиболее очевидно это в случае галактик, которые можно рассматривать как наборы звезд, движущихся по орбитам под действием взаимного гравитационного притяжения. Каждая звезда проходит мимо множества других, и все они взаимодействуют подобно молекулам в контейнере с газом, за исключением того, что взаимодействие между ними — исключительно гравитационное (лишь в очень редких случаях одна звезда может непосредственно врезаться в другую). При таком взаимодействии звезды способны обмениваться энергией.[254] Поучаствовав в массе таких встреч, звезды иногда умудряются набрать так много энергии, что скорость их движения достигает скорости убегания, и они вылетают из своей галактики. В результате этого галактика теряет часть своей энергии и, как следствие, сжимается, подталкивая звезды ближе друг к другу. В конечном итоге оставшиеся звезды оказываются так тесно упакованными в своей галактике, что все они проваливаются в черную дыру в ее центре. Начиная с этого момента, мы возвращаемся к предыдущей истории.

Схожая логика распространяется и на любой другой объект во Вселенной, даже если в деталях возможны какие-то отличия. Главная мысль такова: любой камень, или любая звезда, или любая планета, или любое что угодно еще — любая физическая система — хочет оказаться в состоянии с высокоэнтропийной конфигурацией составляющих ее элементов. Это выглядит небольшим литературным преувеличением, ведь у неодушевленных предметов в действительности нет желаний, но данное описание отражает реальность: в ходе свободной, беспрепятственной эволюции система естественным образом приходит к конфигурации с наибольшей энтропией.

1 ... 124 125 126 127 128 129 130 131 132 ... 161
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?