Шрифт:
Интервал:
Закладка:
Теперь, когда в моем распоряжении был метод подсчета мозговых клеток, мне были нужны мозги – и не только человеческие. Мне нужны были мозги широкого спектра других видов для того, чтобы сравнить их с человеческим мозгом: как еще могли мы обнаружить, что наш мозг содержит больше нейронов, чем мозг животных объемом больше нашего, например мозг слона? Мне также хотелось понять эволюционное происхождение разнообразия мозга у разных видов: одинаково ли отношение между размером мозга и числом нейронов у всех млекопитающих, с одинаковой ли скоростью увеличивается число нейронов в разных мозговых структурах, существуют ли универсальные фундаментальные законы, определяющие, из чего состоит мозг. Для достижения этой цели требовались образцы мозга возможно большего числа видов – маленькие и очень маленькие, большие и очень большие – многих групп млекопитающих, помимо общепринятых лабораторных животных: мышей, крыс и, реже, обезьян.
Конечно, надо было с чего-то начать и было очень удобно, что в виварии Института биомедицинских исследований в Рио были не только крысы и мыши, но также хомячки и морские свинки – четыре вида грызунов с восьмикратным разбросом массы тела и девятикратным разбросом массы мозга. Это был хороший старт: я знала, что в нескольких масштабных сравнительных исследованиях клеточного состава мозга, в частности в работе Дональда Тауэра и Герберта Хауга, все млекопитающие сравнивались так, словно они принадлежали одному виду, а мне хотелось избежать этой ошибки (Гейнц Штефан и его команда в Германии все же позаботились о том, чтобы отделить приматов от насекомоядных и летучих мышей в своих исследованиях, но и они привели лишь волюметрические данные, пренебрегая данными денситометрическими, которые могли бы дать хотя бы приблизительное представление о числе нейронов). Так как нам были доступны четыре вида грызунов, я решила, что для начала займусь только ими. Но нам было нужно нечто большее, в частности, нам был необходим мозг очень крупных грызунов, если мы хотели выявить количественные отношения, характерные для построения мозга животных этого отряда.
Здесь нам очень повезло: самый крупный грызун обитает в Южной Америке – это капибара (Hydrochoerus hydrochoerus, «водосвинка», рис. 3.1), бесхвостый бурый мохнатый клубок размером с немецкую овчарку, с квадратной мордой, совершенно не похожий на крыс и других грызунов, если не считать огромных, характерного вида резцов. Это общительное стадное животное обитает на мелководье пресных озер и рек в бассейне Амазонки. При приближении змей или крупных кошачьих – своих врагов – капибара прячется под воду, выставив на поверхность одни только ноздри. К счастью, капибара не является угрожаемым видом. Мясо капибары идет в пищу и считается даже лакомством, особенно на северо-западе Бразилии. Недавно капибар видели в лагунах Рио-де-Жанейро, и они стали настоящей чумой для Кампинаса (штат Сан-Паулу). Говорят, что для того, чтобы получить официальное разрешение на отлов или на охоту на капибар, надо пройти круги бюрократического ада. Кроме того, капибары полюбились публике, которая страшно радуется, завидев их в воде, и мне не хотелось омрачать эту радость. Изучать разнообразие мозга я собиралась не всю жизнь, и мне были не нужны негативные упоминания в прессе о моей скромной особе.
Рис. 3.1. Капибара (Hydrochoerus hydrochoerus) – самый крупный в мире грызун (слева) и агути (Dasyprocta primnolopha) – четвертый по величине грызун (справа)
Как раз в то время, когда я начала искать фермы, на которых разводили капибар для ресторанов Северо-Запада, Роберто Лент, мой сотрудник, получил новость от Кристовау Пикансо-Диниза, своего коллеги из Федерального университета в Белем-ду-Пара, в Северной Бразилии. Бразильское ведомство по возобновлению природных ресурсов и защите окружающей среды захватило двух капибар, которых нелегально выращивала на мясо одна семья, и уже хотело как-то от них избавиться, когда сотрудникам ведомства пришло в голову поинтересоваться у Кристовау, который изучал сенсорные представительства в головном мозге, не нужны ли ему капибары (нет, я не знаю, каким был ход мыслей сотрудников). Кристовау знал о новом направлении наших исследований по сравнительной анатомии мозга и предложил нам мозг этих капибар. Его студенты, напялив выданные им мясницкие фартуки, забили животных, и нам прислали их головы в большом пластиковом контейнере, залитые раствором параформальдегида. Это было страшное и зловонное послание, но мы радовались как дети: у нас теперь был мозг капибары!
Любезность Кристовау этим не исчерпалась. Он снабдил нас еще двумя экземплярами мозга другого крупного амазонского грызуна – агути (Dasyprocta primnolopha; рис. 3.1). Это довольно злобное животное размером с домашнюю кошку, которое во время еды сидит на задних лапах и держит еду двумя передними лапами, как крыса. Это четвертый в мире по величине грызун, который уступает североамериканскому бобру и южноамериканской паке, но при массе тела 3–4 кг он нам идеально подходил. Теперь у нас была партия из шести грызунов разных видов с массой тела от 40 г (лабораторная мышь, Mus musculus) до более чем 40 кг (капибара) и с массой мозга от 0,4 до 75 г (что можно сравнить с массой головного мозга макака). Теперь оставалось превратить все эти мозги в суп.
Как новичок в этой области, я не могла представить себе тогда всю реальную важность числа нейронов и других клеток, которое мы теперь могли определить у разных видов грызунов. Я чувствовала, что теперь, имея возможность исследовать клеточный состав мозга разных видов, мы находимся на пороге чего-то важного, но мне хотелось послушать мнение и других специалистов. Так как в то время мы еще не успели опубликовать описание нашего метода «изотропного фракционирования» и данные исследования мозга шести грызунов, мне надо было поговорить с кем-то лично и объяснить, что мы делаем.
Возможность представилась в марте 2004 года, во время нашего пребывания на симпозиуме, организованном Международным институтом нейробиологии Мигеля Николели. Институт расположен в Натале – на северо-востоке Бразилии. Джон Каас, ведущий специалист по эволюции мозга приматов и старинный друг Мигела, должен был выступать на симпозиуме. Я подошла к нему сразу после выступления – я, не знакомая с ним лично и не принадлежавшая ни к одной из школ в этой отрасли, – и прямо, без обиняков и вступлений, спросила: «Что если я скажу, что располагаю очень простым способом подсчета нейронов в целом мозге, в целой коре и в любой структуре на выбор? Насколько, по-вашему, это важно?» Джон широко раскрыл глаза и, откинув назад голову, внимательно посмотрел на меня из-за крошечных очков. Теперь я знаю, что это признак сильного удивления. «Мы давно ищем способ подсчета, но пока никому не удалось этого сделать». Это было все, что я хотела услышать. По крайней мере, мы были на пути к чему-то очень полезному.
Позднее, в том же году, мы представили свои первые результаты по мозгу грызунов в Мекке нейробиологии – на ежегодном собрании Нейробиологического общества в Соединенных Штатах. Джон и его ассистент Кристина Коллинз подошли к нашему стенду, и мы заговорили о возможном сотрудничестве в исследовании числа нейронов мозга разных видов приматов, которые были доступны в лаборатории университета Вандербильта. После того как в 2005 году была опубликована наша статья об изотропном фракционировании, на следующем симпозиуме общества, где мы с Роберто представили второй стенд об изменении числа нейронов в развивающемся мозге крысы, Джон, Кристина и я встретились снова. Теперь планы приглашения меня в университет Вандербильта для начала активного сотрудничества стали более серьезными. Три месяца спустя я уже была там.