litbaza книги онлайнДомашняяПерспективы отбора - Елена Наймарк

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 9 10 11 12 13 14 15 16 17 ... 81
Перейти на страницу:

После изобретения митоза все выгоды частого обмена хромосомами и кроссинговера сохраняются в полной мере. Поэтому у полиплоидных архей, научившихся аккуратно распределять хромосомы по дочерним клеткам, не было оснований отказываться от хромосомного обмена. Но со временем это закономерно привело к новому конфликту, для разрешения которого пришлось изобрести мейоз.

Изобретение митоза приводит к диверсификации хромосом, что порождает новые проблемы, для решения которых нужно изобрести мейоз. Неизбежным следствием изобретения митоза полиплоидными археями — предками эукариот — должна была стать быстрая диверсификация хромосом. Митоз снимает проблему сегрегационного груза, и поэтому избыточные копии генов, расположенные на разных хромосомах, получают небывалую эволюционную свободу. В рассматриваемой компьютерной модели они просто начинают деградировать, беспрепятственно накапливая вредные мутации, так что скоро у каждого гена остается только одна неиспорченная копия, расположенная на любой из хромосом. Каждая хромосома при этом становится уникальной и незаменимой, потому что те гены, которые остались на ней неиспорченными, безнадежно испорчены на всех остальных хромосомах.

Перспективы отбора

В модели не предусмотрено приобретение генами новых функций. Однако это именно то, что наверняка будет происходить в подобной ситуации у реальных живых организмов. Многие избыточные гены будут потеряны или безнадежно испорчены прежде, чем в них возникнет полезная мутация, но многие поделят функции или выработают новые.

Таким образом, изобретение митоза фактически превращает полиплоидный организм в моноплоидный, обладающий несколькими разными хромосомами, с высоким уровнем генетической избыточности. Здесь уместно вспомнить, что множественные хромосомы и генетическая избыточность — характерные эукариотические черты, происхождение которых долго оставалось загадкой. Предложенная гипотеза дает им внятное историческое объяснение.

По мере того как хромосомы специализируются и становятся уникальными, унаследованные от предков способы свободного хромосомного обмена и рекомбинации становятся все менее выгодными, а затем и вовсе начинают вредить. Действительно, если все ваши хромосомы уникальны и незаменимы, вы уже не можете просто передать в другую клетку по цитоплазматическому мостику одну-две случайно выбранные хромосомы и получить какие-то другие взамен. Необходимо сделать обмен хромосомами и рекомбинацию более избирательными, чтобы в них участвовали только очень похожие (гомологичные) хромосомы. Моделирование подтверждает эти рассуждения. Кроме того, хорошо бы еще позаботиться о том, чтобы каждая хромосома принимала участие в рекомбинации с оптимальной частотой.

Очевидное решение проблемы состоит в развитии клеточного слияния (которое, возможно, уже имелось у предков эукариот, ведь его наличие предполагается у Haloferax) и спаривания гомологичных хромосом двух клеток с кроссинговером и последующим аккуратным распределением по дочерним клеткам. Важно, чтобы в ходе клеточного деления, следующего за попарной рекомбинацией хромосом, каждая дочерняя клетка получила строго по одной хромосоме из каждой гомологичной пары. Уже имеющийся механизм митоза служит идеальной заготовкой (преадаптацией) для эволюции такого клеточного деления. И вот они — сингамия и мейоз.

Изучение молекулярных механизмов мейоза уже давно привело специалистов к выводу, что мейоз наверняка развился на основе митоза. Также есть веские аргументы в пользу того, что эволюция мейоза началась с развития механизма спаривания гомологичных хромосом и что смысл этого новшества был не в том, чтобы повысить интенсивность рекомбинации, а в том, чтобы ограничить ее, запретив рекомбинацию между непохожими хромосомами (Wilkins, Holliday, 2009). Так что результаты моделирования хорошо согласуются с этой идеей и объясняют, откуда взялась потребность в такой адаптации.

Предлагаемый эволюционный сценарий.

1) Предки эукариот были полиплоидными археями, не имевшими митоза. Они жили в мутагенной среде на мелководьях во времена «кислородной революции», когда на планете впервые стал расти уровень свободного кислорода. В таких условиях быть полиплоидом полезно в краткосрочной перспективе, но чревато вымиранием в долгосрочной.

2) Отбор способствовал выработке адаптаций, уменьшающих негативные эффекты полиплоидности при сохранении ее преимуществ. В результате выработался набор средств, снижающих риск вырождения полиплоидов в мутагенной среде: унификация хромосом путем генной конверсии, интенсивный горизонтальный перенос генов между родственниками (спаривание с образованием цитоплазматических мостиков, возможно — временное слияние клеток), циклы плоидности (периодические редукционные деления).

3) Поскольку эти относительно простые полумеры, по-видимому, не решили проблему полностью, в дальнейшем развивались еще более эффективные средства защиты от генетической деградации: обмен целыми хромосомами в сочетании с рекомбинацией, переход от конверсии к кроссинговеру (поскольку он эволюционно стабилен и позволяет осуществлять генетический обмен часто), замена кольцевых хромосом линейными.

4) Наконец, был изобретен митоз — аккуратное распределение хромосом при делении, так что каждая дочерняя клетка стала гарантированно получать ровно одну копию каждой родительской хромосомы. Это сразу сняло проблему сегрегационного груза. Однако обмен хромосомами в сочетании с кроссинговером по-прежнему был весьма полезен, так что у предков эукариот не было оснований от него отказываться.

5) Специализация и диверсификация хромосом, являющиеся неизбежным следствием изобретения митоза полиплоидами, постепенно вступили в конфликт со старыми способами безвыборочного генетического обмена и рекомбинации. Эти способы «устарели», и отбор способствовал их модернизации. В результате развились механизмы, обеспечивающие обмен, спаривание и рекомбинацию только очень похожих (гомологичных) хромосом. В конечном счете это привело к развитию сингамии и мейоза, то есть настоящего эукариотического полового размножения.

6) Одновременно должно было происходить совершенствование механизмов выбора брачного партнера, поскольку, когда вы подходите к межорганизменной рекомбинации столь серьезно, спариваться с кем попало опасно. Подобно тому как хромосомы стали спариваться для обмена участками только с очень похожими хромосомами, клетки должны были начать спариваться только с клетками, имеющими такой же хромосомный набор. Результат — появление «биологических видов» с хорошо перемешиваемыми и в меру изолированными генофондами. Но пока механизмы выбора партнеров были еще несовершенны, эукариоты могли нахватать много генов от неродственных линий (что они, судя по всему, и сделали).

Испытание на прочность. Всякая гипотеза, чтобы получить признание, должна пройти проверку временем и новыми фактами. Это дело будущего. Впрочем, несколько испытаний гипотеза Маркова и Казначеева уже благополучно прошла.

Во-первых, в 2015 году, когда шла работа над моделью, появилось сообщение о том, что у архей обнаружена строгая корреляция между полиплоидностью и наличием гистонов (Spaans et al., 2015). То, что у некоторых архей есть гистоны, было известно давно, и этот факт всегда считался важным аргументом в пользу того, что предками эукариот были именно археи. Новые данные показывают, что этот аргумент приложим только к полиплоидным археям. Связь между гистонами и полиплоидностью, по-видимому, объясняется тем, что гистоны помогают упаковывать множество копий генома в одной маленькой прокариотической клетке. Плоидность ближайших прокариотических родственников эукариот — асгардархей — напрямую не измерялась, поскольку эти микробы известны только по геномным последовательностям. Однако в геномах представителей всех четырех типов асгардархей имеются гены гистонов. Значит, асгардархеи, скорее всего, полиплоиды.

1 ... 9 10 11 12 13 14 15 16 17 ... 81
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?