Шрифт:
Интервал:
Закладка:
Геномы бактерий меньше, но их труднее получить в чистом виде. С теми бактериями, которые удается выращивать в виде культуры, можно разобраться достаточно легко. Прочие же так и остаются в виде непонятной смеси, содержащей неизвестно сколько различных организмов, каждый из которых добавляет в общую сумму очень небольшое количество ДНК.
Эту трудность можно обойти, прибегнув к так называемому внекультурному анализу. Он объединяет в себе растущие возможности ДНК-секвенирования с ширящимся знанием биологии бактериальной жизни. Возьмите пробу микрожизни откуда угодно: это может быть ведро морской воды, пригоршня почвы или (как раз для наших целей) кучка человеческих экскрементов. Там вы, помимо всего прочего, обнаружите массу бактерий, вирусов и (возможно) других, более крупных организмов. Не трудитесь отделять их друг от друга. Просто извлеките все ДНК, расщепите их на удобные для анализа куски и затем проведите общее секвенирование.
Появление геномики, действующей в промышленных масштабах, предоставляет ученым доступ к постоянно расширяющейся базе данных ДНК-последовательностей. А поскольку вся эта информация хранится в электронной форме (а не только в самой ДНК), компьютеры могут легко анализировать ее, сравнивая новые образцы ДНК с теми, что уже имеются в хранилище данных. Порой они находят ряд тех же букв, следующих в том же порядке; иными словами, выявляется полное совпадение данных. Иногда это часть гена, чья функция нам уже известна (зачастую она состоит в том, чтобы руководить синтезом определенного белка). Иногда этот фрагмент чуть отличается от какого-то существующего гена. Иногда он похож на ген, но содержит неизвестный компонент. Так, фрагменты ДНК, отвечающие за кодирование белков, заключают в себе особые сигналы, показывающие, где клеточная аппаратура для чтения ДНК должна прекращать работу, а где должна снова ее начинать. При тщательно продуманной интерпретации такое секвенирование «всего, что попало в ведро» способно многое поведать о населении ведра.
Впрочем, пока все равно не так-то просто осмыслить, что же присутствует в ключевых областях человеческого микробиома. Толстая кишка человека – вероятно, самая богатая и разнообразная экосистема на планете. Выделите из нее все гены, и вы обнаружите множество таких, которых никто никогда раньше не видел. Однако подобное массовое секвенирование отделяет ген от организма, которому он принадлежит; поэтому нельзя сказать, какие разновидности бактерий (или других существ) присутствуют в данном месте.
Биологи подчас пренебрегают этими подробностями, чтобы хотя бы понять, сколько различных видов имеется в образце. Для этого они сосредотачивают внимание лишь на одном определенном гене каждой бактерии. Подход действенный: у разных бактерий этот ген почти один и тот же, если не считать небольших его участков, где наблюдаются существенные отличия. Этот ген отвечает за формирование участка РНК, молекулярной кузины ДНК, а РНК входит в состав незаменимой наномашины – рибосомы, получающей генетическое послание от участка ДНК и на основе этой инструкции собирающей аминокислоты в белковую молекулу.
Один из таких генов отвечает за 16S рРНК (рибосомную РНК, названную так по скорости седиментации – скорости, с которой она движется, если поместить суспензию с ней в центрифугу. Стандартная лабораторная методика разделения крупных фрагментов клеток).
16S рРНК приносит исследователям неоценимую пользу. Она имеется лишь у бактерий, поскольку эукариотические рибосомы устроены иначе. В клетке она присутствует в больших количествах, а значит, ее можно сравнительно легко оттуда извлекать. А 1500 нуклеотидных оснований[24], из которых она состоит, можно было секвенировать уже несколько лет назад.
Последовательность 16S рРНК занимает важное место в новейшей истории биологии: этот фрагмент стал стандартным инструментом первой стадии анализа микробиома. Собственно, первые работы с 16S рРНК начались еще до того, как можно было секвенировать всю последовательность. Карл Вёзе, умерший в 2012 году, давно использовал ее для того, чтобы заново нарисовать всю карту жизни. Еще в 1970-е годы он начал сравнивать последовательности коротких фрагментов РНК – олигонуклеотидов – у различных бактерий. Выстраивая взаимосвязи между микроорганизмами и «генеалогическими деревьями» этих последовательностей, в конечном счете удалось кардинальным образом пересмотреть всю структуру жизни на Земле. Вёзе обнаружил существование третьего домена (надцарства) живых организмов (входящие в него существа теперь именуются археями), довольно сильно отличающегося от двух доменов, которые уже были известны, – бактерий и эукариот (существ более крупных, имеющих клеточное ядро). Археи, как и бактерии, являются прокариотами. Раньше ученые полагали, что все прокариоты – сравнительно близкие родственники. Но археи заметно отличаются от бактерий. Поначалу их считали существами экзотическими, обитающими лишь в самых необычных местах, но теперь-то нам известно, что археи есть повсюду, в том числе в нашем микробиоме.
Добавление нового подразделения в совокупность всех живых организмов заставило переписать учебники и утвердило секвенирование 16S рРНК в качестве одного из ключевых методов микробиологического анализа. Однако первые работы Вёзе основывались на секвенировании фрагментов РНК, полученных из чистых культур. Более современный 16S-анализ идет еще дальше, позволяя исследователям отбирать ДНК-последовательности, создающие 16S рРНК, из невероятной мешанины живых организмов.
Основная идея остается той же, однако на практике осуществить ее непросто. Работа состоит из нескольких стадий: клетки образца «вскрывают», из них извлекают ДНК, затем обнаруживают все 16S-гены при помощи ДНК-праймеров, распознающих участки в начале или в конце гена, совершенно одинаковые для всех видов. Затем ДНК-фрагменты, помеченные этими праймерами, проходят циклическую обработку. Метод, изобретенный в 1980-х и названный полимеразной цепной реакцией (ПЦР), позволяет быстро и многократно копировать небольшие количества ДНК. И наконец – собственно секвенирование.
Финальная стадия – сравнение изменчивых участков генетических последовательностей 16S с уже известными нам участками (можно сравнивать как один участок, так и несколько) – сегодня отдана компьютерным программам, имеющим базы данных ДНК, где содержатся десятки тысяч таких последовательностей. То, над чем некогда мучились бесчисленные аспиранты, теперь автоматизировано (как и большинство рутинных процедур современной молекулярной генетики). Можно прикрепить небольшие отрезки многих таких последовательностей к «биочипу» – ДНК-аналогу микросхемы – и проводить сравнение непосредственно в образце. То, что некогда требовало отдельной лаборатории и усилий высококвалифицированных специалистов, теперь проделывает машина, хотя исследователям все равно требуется знать конкретные детали тех стадий, что приводят к получению результатов. Кроме того, следует знать много тонкостей: как обрабатывать пробу, как извлекать ДНК, какие именно участки последовательностей сравнивать. Ген 16S содержит в себе 9 из важнейших гипервариабельных участков ДНК; их многочисленные различия неоднородно распределены среди бактериальных видов. Поэтому от того, какие участки вы изучаете, многое зависит. Современные методы ДНК-анализа, особенно способность «размножать» сверхмалые количества ДНК, снова и снова копируя эту молекулу, имеют оборотную сторону. Эти методы чувствительны к загрязняющим компонентам, заносимым в ходе анализа, не меньше, чем к компонентам пробы, присутствовавшим в ней изначально. Это большая помеха на пути развития микробиомных исследований. Так, тщательная проверка, выполненная в 2014 году, показала, что стандартные наборы для выделения ДНК, которыми пользуются сегодня многие специалисты, зачастую не являются стерильными (вопреки рекламе). Если исходный образец взят из области с низкой плотностью микробного населения, результаты могут легко искажаться из-за микробов, невольно вносимых исследователями в процессе работы[25].