litbaza книги онлайнМедицинаЭнциклопедия Амосова. Алгоритм здоровья - Николай Амосов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 128 129 130 131 132 133 134 135 136 ... 222
Перейти на страницу:

4. Построение блок-схемы объекта. Элементы, подсистемы и связи определяются гипотезой и выбранным нижним уровнем структур.

5. Выбор значимых переменных (ограничение числа связей). Сначала перечисляются все известные переменные для каждого из элементов, потом выбираются значимые согласно гипотезе с учетом поставленной задачи. Так уточняются связи и строится структурная схема объекта, которая становится основой модели.

6. Установление по тем же принципам внешних «входов» системы — сначала определяются все внешние воздействия, потом из них выбираются значимые для поставленных целей.

7. Установление характеристик элементов, т. е. зависимостей «входы» — «выходы» и «время». Это наиболее произвольный и сложный этап работы, так как количественные данные литературы либо противоречивы, либо недостаточны, либо вообще отсутствуют. Статические и динамические характеристики каждого элемента могут быть выражены графиками, алгебраическими или дифференциальными уравнениями, их системами.

8. Отладка модели. Задаются начальные внешние условия, исходное состояние элементов и производится увязка всех характеристик. При этом производится согласование «входов» и «выходов» как целой системы, так и ее элементов. В процессе этой работы обнаруживается противоречивость характеристик некоторых элементов при крайних режимах, требующая коррекций. Иногда возникает и полная невозможность сбалансировать модель, указывающая на непригодность принятой гипотезы. Отладка производится для нескольких граничных условий. Для сложной системы «типа живых» принципиально невозможно создать идеальную модель, так как нельзя повторить все ее низшие уровни.

9. Исследование модели, т. е. просчитывание многочисленных статических и динамических режимов. Это осуществимо только при использовании вычислительных машин. Вначале надо создать и отладить программу, что обычно требует небольших коррекций в самой модели, прежде всего исправления характеристик элементов (например, приведения их к линейным). Само исследование уже позволяет получить новую информацию об объекте, предположить неизвестные дотоле качества.

10. Верификация модели — сравнение характеристики модели и объекта при одинаковых условиях с целью определения достоверности модели и особенно границ ее применимости.

Не буду подробно обсуждать математические проблемы эвристических моделей и ограничусь лишь кратким перечислением условий, связанных с их спецификой:

1. Много переменных. Количество их определяется назначением модели и наличием данных. Так, для физиологических моделей, больше других претендующих на приближение к реальным, количество переменных составляет несколько сотен, поскольку для дальнейшего увеличения их числа просто нет достоверной информации (например, чтобы «спуститься» с уровня органов на молекулярный). Модели интеллекта не рассчитаны на воспроизведение процессов в мозге, но количество «слов», которыми необходимо манипулировать, чтобы доказательно смоделировать мышление человека, видимо, должно исчисляться многими тысячами. Напротив, модель личности можно ограничить сотнями переменных, так как она по своему назначению предполагает высокую обобщенность и связана с ограниченными возможностями лабораторной оценки психики. Другое дело — модели общественных систем. Их объем, видимо, весьма велик.

2. Сложные системы содержат множество «горизонтальных» связей в пределах уровня и «вертикальных» — между ними. Переменные на разных уровнях имеют разную специфику и временные характеристики. Все это должно быть представлено в модели, иногда при помощи и дополнительных переменных, отражающих качество основных.

3. Как правило, характеристики элементов нелинейны. Степени их нелинейности крайне различны, и некоторые точки кривых целесообразно выражать «скачками» (или логическими переключениями), отражающими дискретность в деятельности систем.

4. Необходимость обобщать переменные, т. е. заменять несколько конкретных переменных одной обобщенной (условной), является неизбежной при моделировании. Нужны специальные правила, описывающие, что можно, а чего нельзя объединять. По всей вероятности, они должны основываться на корреляциях показателей.

5. В эвристических моделях точность вычислений не обязательна, поскольку ее нет в экспериментальных науках, изучающих моделируемые объекты. Это очень важное условие. Оно позволяет отказаться от сложных математических описаний. Так, например, можно отказаться в ряде случаев от дифференциальных уравнений в пользу алгебраических и динамику систем рассчитывать по временным тактам. Нелинейные характеристики можно заменять кусочно-линейными приближениями.

6. Модели должны предусматривать вероятностные расчеты. Поскольку в системах-объектах очень много неизвестного, то неизбежны варианты допущений, существенно влияющие на поведение системы. Так, например, в модели внутренней сферы, призванной воспроизводить динамику развития болезни, подобные варианты совершенно необходимы. То же касается моделей общества. Иное дело — искусственный интеллект, который можно создать строго детерминированным.

7. Специфика метода эвристического моделирования выдвигает свои требования к программированию моделей на компьютерах. Программы должны позволять произвольное изменение любой величины, любой характеристики, должны быть гибкими, блочными. Это необходимо для создания самой модели. Задача разработчика программы не ограничивается воспроизведением заданных формул и цифр, часто приходится их заново создавать и вносить поправки в ходе отладки модели с тем, чтобы получить некоторые предполагаемые по гипотезе конечные «выходы».

8. О дискретных и непрерывных моделях. Сложные системы «типа живых» функционируют по программам, в которых скорости различных изменений и превращений меняются в больших пределах, хотя в принципе они всегда конечны. При создании моделей приходится пользоваться обобщениями и масштабами времени, поэтому изменения объектов с большими скоростями воспроизводятся как «скачки» количества или качества. Все это усложняет моделирование, поскольку нужно совмещать традиционные математические методы анализа с логическими.

Создание эвристических моделей требует творческой работы коллектива специалистов в данной области науки и математиков. Те и другие должны проникнуться общими идеями и достигнуть полного взаимопонимания. Роль ведущего в группе определяется не специальностью, а способностью широко охватить предмет и создавать гипотезы. Конечно, нужны также работники-эрудиты, хорошо ориентирующиеся в массе имеющихся фактических данных, программисты, кропотливо отлаживающие сложные программы и готовые в любой момент переделывать их заново в связи с изменением гипотезы.

Эвристические модели приближают нас к теории систем «типа живых», позволяя прогнозировать их поведение, исследовать возможности управления и даже изменения. Более того, эвристические модели обещают совершенно новый аппарат познания. Такие модели систем «типа живых» составляют основу построения в будущем реальных моделей, призванных заменять традиционные книжные модели нашей науки. Разработка эвристических моделей интересна сама по себе, поскольку удовлетворяет чувство любознательности. В самом деле, что может быть заманчивее, чем попытаться заглянуть в механизм работы клетки, целого организма или понаблюдать поведение искусственного «человека»?

1 ... 128 129 130 131 132 133 134 135 136 ... 222
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?