litbaza книги онлайнРазная литератураШум. Несовершенство человеческих суждений - Оливье Сибони

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 12 13 14 15 16 17 18 19 20 ... 123
Перейти на страницу:
больший вес, чем незначительным.

Теперь вы понимаете, почему гауссовская формула измерения общей погрешности называется среднеквадратической ошибкой, а сам подход – методом наименьших квадратов. Метод базируется на возведении погрешностей в квадрат, и никакая другая формула не способна поддержать ваше интуитивное предположение, что лучшая оценка – это среднее арифметическое значение.

Другие математики быстро признали преимущества гауссовского метода. Сам же Гаусс среди множества прочих достижений использовал MSE (и другие математические открытия) для решения задачи, которая была не под силу лучшим астрономам Европы: повторного обнаружения Цереры – астероида, который ученые могли наблюдать лишь непродолжительное время, после чего в 1801 году он пропал из виду из-за ярких солнечных бликов. Астрономы пытались рассчитать траекторию движения Цереры, неправильно учитывая погрешность измерения своих телескопов, поэтому так и не обнаружили карликовую планету в точке, на которую указывали их расчеты. Гаусс исправил их вычисления при помощи метода наименьших квадратов. Направив телескопы в точку, указанную Гауссом, астрономы увидели Цереру!

Вскоре метод наименьших квадратов стал применяться учеными в самых различных дисциплинах. Спустя два века он остается стандартным способом оценить погрешность в любых вычислениях, требующих точности. В статистике без взвешивания квадратов погрешностей не обойтись, да и в других областях науки метод наименьших квадратов используется постоянно. Очень скоро мы с вами убедимся, что последствия применения этого подхода могут быть весьма неожиданными.

Уравнения расчета погрешности

Роль смещения и шума в возникновении погрешностей легко обобщить двумя выражениями, которые мы назовем уравнениями расчета погрешности. Первое из этих уравнений раскладывает погрешность однократного измерения на две составляющие, с которыми вы уже знакомы: смещение, или среднюю погрешность, и остаточную «шумную погрешность». Шумная погрешность имеет положительное значение, если погрешность больше, чем смещение, и отрицательное, если меньше. Среднее значение шумных погрешностей равняется нулю. В первом уравнении нет ничего нового:

Погрешность в однократном измерении = Смещение + Шумная погрешность

Второе уравнение расчета погрешности – это разложение на составные части среднеквадратической ошибки, уже знакомой нам меры общей погрешности. При использовании простых алгебраических действий44 среднеквадратическая ошибка может быть представлена как сумма квадратов смещения и шума. (Вспомните, что шум – стандартное отклонение в измерениях, идентичное стандартному отклонению шумных погрешностей.) Таким образом:

Общая погрешность (MSE) = Смещение2+ Шум2

Возможно, вид этого уравнения – сумма двух квадратов – напоминает вам известную со школьных лет теорему Пифагора. Как вы, вероятно, помните, в прямоугольном треугольнике сумма квадратов катетов равняется квадрату гипотенузы. Поэтому уравнение расчета погрешности можно визуализировать при помощи трех квадратов, стороны которых образуют стороны прямоугольного треугольника, при этом площади этих квадратов равны соответственно MSE, смещению2 и шуму2. Рисунок 7 показывает, что MSE (площадь темного квадрата) равняется сумме площадей двух других квадратов. На изображении слева шум больше, чем смещение; на изображении справа смещение больше, чем шум. Однако в обоих случаях MSE одинаковы, а уравнение расчета погрешности применимо к обоим изображениям.

Рис. 7. Два разложения MSE на составляющие

Математическое выражение и его визуализация показывают, что роли смещения и шума в уравнении расчета погрешности идентичны. При определении общей погрешности они взаимонезависимы и равновзвешенны. (Заметьте, что в последующих главах мы прибегнем к похожему разложению на сумму квадратов, анализируя составляющие шума.)

Уравнение расчета погрешности предлагает ответ на практический вопрос, заданный Эми: как изменится общая погрешность, если в одинаковой степени сократить уровень шума или смещения? Ответ на этот вопрос очевиден: в уравнении расчета погрешности смещение и шум взаимозаменяемы, поэтому независимо от того, какой из этих двух показателей мы уменьшим, снижение общей погрешности будет одинаковым. На рисунке 4, где смещение и шум оказались идентичными (по 10 %), их вклад в общую погрешность равнозначен.

Уравнение расчета погрешности определенно говорит в пользу первоначального порыва Эми принять меры по сокращению уровня шума. Каждый раз, когда вы обнаруживаете шум, вы должны постараться его уменьшить! Уравнение указывает на то, что шеф Эми был не прав, предложив подождать до момента, когда можно будет измерить смещение в прогнозах, и только затем принимать решение о дальнейших действиях. При подсчете общей погрешности шум и смещение выступают независимо: выгода от сокращения уровня шума никак не изменится, каким бы при этом ни было смещение.

Эта идея крайне парадоксальна, но при этом принципиально важна. В качестве демонстрации на рисунке 8 показан эффект от одинакового сокращения смещения и шума. Чтобы вам было проще оценить, чего удалось достичь в каждом случае, мы представили первоначальное распределение ошибок (с рисунка 4) в виде пунктирной линии.

В случае А мы исходим из того, что начальник Эми настоял на своем: был определен уровень смещения, затем его сократили вдвое (возможно, предоставив данные исследования прогнозистам, оказавшимся слишком оптимистичными). Уровень шума остался неизменным. На графике сразу заметны улучшения: распределение ошибок целиком сдвинулось в направлении истинного значения.

Рис. 8. Распределение ошибок: двукратное сокращение смещения в сравнении с двукратным сокращением шума

В случае Б мы видим, что бы произошло, если бы Эми все же удалось переубедить своего шефа. Уровень смещения не меняется, а шум сокращается вдвое. Парадокс в том, что создается впечатление, что снижение уровня шума только ухудшило ситуацию. Теперь разброс прогнозов гораздо меньше (ниже уровень шума), но они не стали точнее (смещение не изменилось). Если раньше по одну сторону от истинного значения были 84 % прогнозов, теперь там оказались почти все прогнозы (98 %). Кажется, что сокращение шума значительно ухудшило их качество – совсем не похоже на положительные изменения, на которые так надеялась Эми!

Вопреки создавшемуся впечатлению, в обоих случаях общая погрешность уменьшилась одинаково. Иллюзия того, что в случае Б результаты стали хуже, возникает из-за ошибочных интуитивных представлений о смещении. Целесообразной мерой смещения следует считать не то, какой процент ошибок оказывается по разные стороны от нулевой погрешности, а среднюю погрешность – расстояние между наивысшей точкой кривой и истинным значением. В случае Б средняя погрешность не изменилась. Она все еще высока – 10 %, но больше она не стала. Действительно, смещение стало гораздо заметнее, потому что теперь его вклад в общую погрешность весомее (80 % против 50 % ранее). Но это произошло потому, что уменьшился уровень шума. Напротив, в случае А смещение сократилось, а шум остался прежним. В конечном счете MSE одинакова в обоих случаях: равные объемы сокращения шума или смещения оказывают на MSE один и тот же эффект.

Как показывает этот пример, среднеквадратическая ошибка противоречит нашим интуитивным представлениям

1 ... 12 13 14 15 16 17 18 19 20 ... 123
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?