Шрифт:
Интервал:
Закладка:
Гук, широко известный приписыванием себе идей, не всегда своих собственных, заявил, что он уже решил эту проблему, но отказался поделиться решением на том интересном и остроумном основании, что не хочет лишать других удовольствия найти ответ самим. Вместо этого он «на время утаит решение, чтобы другие могли лучше его оценить». Если у него и были какие-то соображения по этому поводу, никаких свидетельств он не оставил. Галлей, однако, до того загорелся желанием найти ответ, что на следующий год поехал в Кембридж и набрался смелости обратиться к профессору математики Исааку Ньютону в надежде, что тот сумеет ему помочь.
Ньютон, бесспорно, был странной личностью – сверх всякой меры выдающийся мыслитель, но замкнутый, безрадостный, раздражительный до безумия, легендарно рассеянный (говорили, что по утрам, свесив ноги с кровати, он мог часами сидеть, размышляя над осенившими его вдруг идеями) и способный на самые неожиданные выходки. Он создал собственную лабораторию, первую в Кембридже, но затем занялся весьма странными опытами. Например, однажды ввел себе шило – длинную иглу, какими пользуются при сшивании кожи, – в глазную впадину и крутил им «между глазом и костью как можно ближе к глазному дну» лишь для того, чтобы посмотреть, что будет. Каким-то чудом ничего не случилось, по крайней мере ничего серьезного. В другой раз он глядел на солнце, пока мог выдержать, чтобы узнать, как это отразится на его зрении. И вновь он избежал серьезных повреждений, хотя пришлось провести несколько дней в затемненном помещении, пока глаза не простили ему его опытов.
Но над всеми этими странностями и причудами властвовал интеллект гения, – даже действуя в обычном русле, Ньютон зачастую проявлял странные особенности. В студенческие годы, разочарованный ограниченными возможностями традиционной математики, он придумал совершенно новую ее форму – дифференциальное и интегральное исчисление, но молчал об этом целых двадцать семь лет. Подобным же образом он работал в области оптики, изменив наши представления о свете и заложив основы спектрографии как науки, и опять же решил не делиться результатами своих работ в течение трех десятилетий.
При всех его талантах настоящая наука составляла лишь часть его интересов. По крайней мере половину своего рабочего времени он отдавал алхимии и неортодоксальным религиозным поискам. Это были не просто дилетантские занятия, а серьезные увлечения, которые полностью его захватывали. Он был тайным приверженцем ереси, известной как арианство, отличительной особенностью которой было отрицание Святой Троицы[60] (по иронии судьбы в Кембридже Ньютон принадлежал к колледжу Святой Троицы). Он проводил бесконечные часы за изучением поэтажного плана храма царя Соломона в Иерусалиме (попутно осваивая иврит, чтобы разбирать подлинные тексты), будучи убежден, что в нем содержится математический ключ к определению даты второго пришествия Христа и конца света. С не меньшим рвением он относился к алхимии. В 1936 году экономист Джон Мейнард Кейнс[61] купил на аукционе саквояж с бумагами Ньютона и, к своему удивлению, обнаружил, что в подавляющем большинстве они относились не к оптике или движениям планет, а свидетельствовали о целеустремленных поисках способа превращения обычных цветных металлов в драгоценные. При химическом анализе пряди волос Ньютона в 1970 году была обнаружена ртуть – элемент, представлявший интерес для алхимиков, шляпных мастеров, изготовителей барометров и, пожалуй, больше ни для кого – причем концентрация ртути раз в сорок превышала естественный уровень. Поэтому не слишком удивительно, что по утрам он забывал встать с постели.
Что рассчитывал узнать у него Галлей во время своего не оговоренного заранее визита в августе 1684 года, можно только догадываться. Но благодаря более поздним воспоминаниям доверенного лица Ньютона Абрахама де Муавра у нас есть описание этой встречи – одной из самых важных для истории науки.
В 1684 году в Кембридж приезжал д-р Галлей [и] после некоторого общения спросил сэра Исаака, что, по его мнению, будет представлять кривая, образуемая планетами, если предположить, что сила притяжения к Солнцу будет обратна квадрату их расстояния до него.
Это была ссылка на математическое понятие, известное как закон обратных квадратов, который, как был твердо убежден Галлей, лежал в основе объяснения, но ему было не вполне ясно, как это показать.
Сэр Исаак сразу же ответил, что это будет [эллипс]. Доктор страшно обрадовался и с удивлением спросил, откуда ему это известно. «Обоснование? – ответил тот. – Я это вычислил». Д-р Галлей сразу попросил показать эти вычисления. Сэр Исаак поискал у себя в бумагах, но не нашел.
Поразительно – все равно что сказать, что нашел лекарство от рака, а потом забыл, куда положил формулу. По настоянию Галлея Ньютон согласился заново сделать расчеты и опубликовать статью. Он выполнил обещание, а потом сделал куда больше. Уединившись на два года напряженных размышлений, он наконец произвел на свет свой шедевр: Philosophiae Naturalis Principia Mathematica, или «Математические начала натуральной философии», более известный как «Начала» Ньютона.
Крайне редко, всего несколько раз в истории, человеческий ум делал наблюдения до того проницательные и неожиданные, что трудно решить, что здесь более поразительно – сам факт или постигшая его мысль. Появление «Начал» было одним из таких моментов. Благодаря им Ньютон мгновенно стал знаменитым. До конца своих дней он купался в почестях, став, среди прочего, первым лицом в Англии, удостоенным рыцарского звания за научные заслуги. Даже великий немецкий математик Готфрид фон Лейбниц, с которым у Ньютона шла долгая ожесточенная борьба за приоритет в создании дифференциального и интегрального исчисления, считал, что вклад Ньютона в математику равен всему накопленному до него. «Ближе к богам не может стоять ни один смертный», – писал Галлей, выражая чувства, многократно отражавшиеся в настроениях его современников и множества других людей впоследствии.
Хотя «Начала» называли «одной из самых недоступных для понимания среди когда-либо написанных книг» (Ньютон намеренно сделал ее трудной, чтобы на ней не паразитировали математические «верхогляды», как он их называл), она служила путеводной звездой тем, кто сумел ее понять. В ней не только математически объяснялись орбиты небесных тел, но и определялась притягивающая сила, в первую очередь ответственная за их движение, – гравитация. Каждое движение во Вселенной вдруг обрело смысл.
В основе «Начал» лежат три закона механики Ньютона (которые утверждают предельно четко, что тело ускоряется в том направлении, в котором получает толчок; что оно будет двигаться равномерно и прямолинейно до тех пор, пока другая сила не замедлит или не отклонит его, и что каждое действие встречает противоположно направленное и равное по силе противодействие) и его закон всемирного тяготения. Он устанавливает, что каждое тело во Вселенной притягивает к себе все другие. Может показаться, что это не так, однако, сидя там, где вы сидите сейчас, вы притягиваете к себе все, что вас окружает: стены, потолок, лампу, любимую кошку, – своим слабым (действительно очень слабым) гравитационным полем. Именно Ньютон осознал, что притяжение двух тел, пользуясь снова словами Фейнмана, «пропорционально массе каждого из них и изменяется обратно пропорционально квадрату расстояния между ними». Иными словами, если удвоить расстояние между двумя телами, притяжение между ними уменьшится в четыре раза. Это можно выразить формулой: