Шрифт:
Интервал:
Закладка:
Если мы умножаем массы, маленькая масса оказывает столь же сильный эффект на конечное произведение, как и большая. Таким образом, результатом умножения малого количества a на огромное количество b является произведение ab. Если теперь мы удвоим a, оно становится равным 2a. Если мы умножаем его на b, произведение становится равным 2ab. Таким образом, при удвоении одного из двух множителей в умножении маленький множитель может удвоить произведение. И удвоение массы яблока удваивает размер силы между яблоком и Землей.
Что же касается притяжения яблоком какого-либо другого объекта обычного размера, оно существует, но столь мало заметно из-за того, что произведение масс этих объектов составляет ничтожно малую часть от произведения массы этого объекта и массы Земли. Сила притяжения между двумя объектами обычного размера соответственно меньшая, и, несмотря на то что такая сила существует, она настолько бесконечно мала, что никак не может обнаружить себя при нормальном состоянии вещей.
Так как Земля притягивает все материальные объекты к себе (даже газообразная атмосфера крепко привязана к планете благодаря силе тяготения), может показаться, что сила тяготения в любой форме порождается массой Земли. Однако Земля вовсе не должна быть вовлечена. Любые две массы должны взаимодействовать гравитационно, и если мы замечаем силу, только когда вовлечена Земля, то потому, что сама наша Земля — единственное тело в нашем окружении достаточно массивное, чтобы породить силу тяготения, достаточно большую, чтобы заявить нам о своем существовании.
Такова сущность вклада Ньютона. Он не открывал закон тяготения в том смысле, что все земные объекты привлечены к земле. (Эта ограниченная концепция, по крайней мере, столь же стара, как Аристотель, а слово «тяжесть» использовалось в этом смысле в течение многих столетий до Ньютона.) Ньютон указал на то, что все существующие массы притягивают другие массы, таким образом, притяжение Земли не является уникальным. Ньютон утверждал, что между любыми двумя материальными телами во Вселенной имеется гравитационное притяжение, его обобщение называется «универсальный закон всемирного тяготения», и прилагательное «универсальный» — наиболее важное слово в этом названии[17].
Если бы это было все, то мы могли бы теперь рассчитать величину составляющей движения Луны, которая направлена к Земле. Все тела, падая на Землю, движутся с одним и тем же ускорением, и поэтому казалось бы логичным решить, что Луна, находясь во власти той же самой силы притяжения, должна делать так же. За одну секунду она должна падать на Землю приблизительно на 4,9 метра. Фактически же составляющая движения Луны к Земле — намного меньше.
Чтобы объяснить это, можно было предположить, что сила тяготения Земли ослабляется с расстоянием, и это кажется разумной гипотезой. Опыт показывает нам, что существует много вещей, которые ослабляются с расстоянием. Так происходит со светом и звуком — двумя наиболее привычными явлениями, с которыми человек всегда был знаком.
И все же — был ли вывод о таком ослаблении поддержан экспериментальным свидетельством?
На первый взгляд может показаться, что не было. Камень, брошенный вниз с высоты 100 метров, падает с ускорением 9,8 м/с2, а другой камень, брошенный вниз с высоты 200 метров, падает с тем же ускорением. Если сила тяготения уменьшается с удалением от Земли, разве не должно паление с большей высоты вызывать меньшее ускорение? Разве ускорение не должно равномерно увеличиваться по мере приближения камня к земле, вместо того чтобы оставаться постоянным, как оно это делает?
Но взгляд Ньютона на эту проблему состоит в том, что все тела привлекают к себе все другие тела. Падающий камень привлекается не только той частью Земли, которая представляет собой ее поверхность непосредственно под ним, но также и той ее частью, которая находится глубже, вплоть до центра и далее, к антиподам, на расстояние 12 740 километров (8000 миль). Он также притягивается и всеми остальными частями во всех направлениях: на север, восток, юг, запад, и во всех промежуточных точках.
Кажется вполне разумным, что для тела, подобного Земле, которая имеет почти правильную сферическую форму, мы могли бы упростить этот вопрос. Притяжение с севера компенсируется притяжением с юга; притяжение с запада компенсируется притяжением с востока; отдаленное притяжение антиподов компенсируется притяжением поверхности непосредственно под нами и так далее. То есть мы можем предположить, что результирующее влияние — полное притяжение Земли — сконцентрировано точно в ее центре.
Радиус Земли равен приблизительно 6370 километрам (3960 милям). Объект, падающий с высоты 100 метров (0,1 километра), начинает свое падение поэтому с точки, находящейся на расстоянии 6370,1 километра от центра Земли, в то время как другой объект, падающий с высоты 200 метров, начинает свое падение с точки, находящейся на расстоянии 6370,2 километра от центра. Различие в силе при такой разнице в расстоянии настолько незначительно, что гравитационное притяжение на таком маленьком расстоянии может рассматриваться в качестве константы. (На самом деле современные инструменты со значительной точностью могут измерять разницу в силе поля тяготения даже при такой маленькой разнице в расстояниях.)
Однако расстояние от Луны до Земли (от центра до центра) в среднем равно 384 500 километрам (239 000 миль). Это — в 60,3 раза дальше от центра Земли, чем в случае, когда объект находится на ее поверхности. При увеличении расстояния в 60 раз сила тяготения могла бы действительно значительно уменьшиться.
Но насколько — «значительно»? Земля притягивает тела по всей своей поверхности, поэтому сила тяготения может рассматриваться как излучение, направленное наружу от Земли во всех направлениях. Если сила действительно делает это, то оно, направленное излучение, может рассматриваться в виде поверхности сферы, которая расширяется все больше и больше, по мере того как отступает от Земли. Если некое установленное количество силы тяготения распространено по поверхности такой растущей сферы, то интенсивность силы на некоем данном месте на поверхности должна уменьшаться, поскольку площадь поверхности возрастает.
Из стереометрии известно, что площадь поверхности сферы находится в прямой пропорции к квадрату ее радиуса. Если одна сфера имеет радиус в три раза больше другого, то площадь ее поверхности больше в девять раз.
По мере того как расстояние между двумя телами увеличивается, сила тяготения между ними должна изменяться обратно пропорционально квадрату этого расстояния. (Такие взаимосвязи хорошо известны как «обратно квадратичная зависимость». Не только тяготение, но и такие явления, как интенсивность света, интенсивность магнитного притяжения и интенсивность электростатического притяжения, ослабляются таким же образом.)