Шрифт:
Интервал:
Закладка:
Мы должны выбрать инструмент для измерения длины гипотенузы, или расстояния между двумя событиями в пространстве-времени. Следует ли нам выбрать эвклидово пространство (тогда мы могли бы использовать теорему Пифагора) или нечто более сложное? Возможно, наше пространство должно быть искривлено, как поверхность Земли, или иметь какую-то иную сложную форму? В действительности существует бесконечное количество способов, позволяющих вычислять расстояния. Мы поступим так, как многие физики: выдвинем предположение, в основу которого будет положен важный и полезный принцип под названием «бритва Оккама» – по имени английского мыслителя Уильяма Оккама, жившего на рубеже XIII–XIV столетий. Эту идею легко сформулировать, но очень сложно реализовать на практике. В упрощенном виде принцип звучит так: «Не нужно ничего усложнять». Оккам сформулировал его так: «Не следует множить сущности без необходимости» (что тут же приводит к вопросу, почему он не придерживался собственного правила, формулируя утверждения). Бритва Оккама – очень мощный инструмент в контексте рассуждений об устройстве Вселенной. По существу, этот принцип гласит, что первой нужно проверять самую простую гипотезу, и только если она окажется ошибочной, постепенно повышать уровень сложности, пока гипотеза не будет подтверждена экспериментальными данными. В нашем случае простейший способ построения расстояния – рассматривать как минимум пространственную часть пространства-времени как эвклидову (другими словами, считать пространство плоским). Это означает перенос старого, испытанного способа работы с расстояниями между объектами в пространстве в нашу новую схему. Что может быть проще? Остается вопрос: каким образом в эту схему добавить время? Второе упрощающее предположение – что наше пространство-время неизменно и везде одинаково. Это важные предположения. В действительности Эйнштейн ослабил их и позволил пространству-времени постоянно изменяться при наличии материи и энергии, что привело его к общей теории относительности, до сих пор являющейся самой удачной теорией гравитации. Мы познакомимся с ней в последней главе, а пока будем игнорировать все эти тонкости. Раз уж мы придерживаемся принципа Оккама и делаем два упрощающих предположения, у нас остается только два варианта вычисления расстояний в пространстве-времени. Длина гипотенузы обязана иметь вид либо s² = (ct)² + x², либо s² = (ct)² – x². Другого выбора нет. Хотя мы этого не доказали, гипотеза о том, что пространство-время должно быть неизменным и везде одинаковым, приводит нас только к этим двум вариантам, и мы должны выбрать либо знак плюс, либо знак минус. Безусловно, есть доказательство или нет, мы можем поступить прагматично и понаблюдать, что произойдет, когда мы испытаем каждый из вариантов.
Смена знака с математической точки зрения означает не слишком большое расширение знаменитого уравнения Пифагора. Наша задача – выяснить, следует ли придерживаться версии уравнения со знаком плюс или использовать версию со знаком минус. На первый взгляд это может показаться довольно странным. Какие вообще могут быть причины для рассмотрения уравнения Пифагора со знаком минус? Но это неверный подход. Формула для расстояния на сфере тоже не имеет ничего общего с уравнением Пифагора, так что все, что мы делаем, – просто играем с идеей о том, что пространство-время может не быть плоским в эвклидовом смысле. Действительно, поскольку версия со знаком минус – единственный вариант, кроме версии со знаком плюс (с учетом сделанных нами предположений), у нас нет логических причин отбросить ее на данном этапе. Поэтому мы должны изучить последствия. Если не подойдет ни одна из версий, значит, мы не получим работоспособную меру расстояния в пространстве-времени. И тогда будем вынуждены начать все с самого начала.
Предупреждаем: сейчас нам придется окунуться в очень элегантную, но достаточно запутанную часть рассуждений. Мы постараемся придерживаться обещания не использовать ничего сложнее теоремы Пифагора, но может так получиться, что вам понадобится прочитать этот текст не один раз. Он того стоит, потому что, внимательно следя за ним, вы сможете испытать чувство, которое биолог Эдвард Уилсон[22] описал как ионическое очарование. Этот термин восходит к работе Фалеса Милетского[23], названного Аристотелем два столетия спустя основоположником естествознания в Ионии в VI веке до нашей эры. Данный поэтический термин отображает убежденность в том, что вся сложность мира объясняется посредством небольшого количества простых законов природы, поскольку природа по своей сути упорядочена и бесхитростна (вспомните эссе Вигнера). Работа ученого – отбрасывать сложности, которые нас окружают, и раскрывать лежащую в их основе простоту. Когда этот процесс приносит желаемые плоды, мы испытываем то самое ионическое очарование. Представьте себе на мгновение кружево снежинки на ладони своей руки. Эта элегантная красивая структура демонстрирует зубчатую кристаллическую симметрию. Не бывает двух одинаковых снежинок, и на первый взгляд этот хаос не может иметь однозначного объяснения. Но наука учит нас, что за очевидной сложностью снежинки скрывается лежащая в ее основе изысканная простота: каждая снежинка представляет собой конфигурацию миллиардов молекул воды H2O. Больше в снежинке ничего нет, а ее поразительно сложная структура образуется, когда молекулы H2O собираются вместе в атмосфере планеты в холодную зимнюю ночь.
Для того чтобы решить вопрос с плюсом или минусом, следует обратить внимание на принцип причинности. Давайте предположим, что уравнение Пифагора применимо и к расстояниям в пространстве-времени, то есть что s² = (ct)² + x². Теперь еще раз вернемся к нашим событиям – подъему в семь утра и завершению завтрака в восемь – и сделаем нечто такое, от чего у вас побегут мурашки по коже, когда вы вспомните, как сидели на уроках математики в школе и смотрели через окно на футбольное поле, нетронутое и зовущее в солнечный весенний день, – назовем момент пробуждения O, а завершение завтрака – A. Мы делаем это исключительно из соображений краткости, чтобы не описывать каждый раз подробно эти события.
Мы знаем, что пространственное расстояние между O и A равно x = 10 метров, а временное – t = 1 час, если x и t измеряю я. Мы еще не решили, чему равно c, но когда будем знать эту величину, то сможем вычислить и расстояние s в пространстве-времени между событиями O и A. Наша гипотеза заключается в том, что, если кто-то пролетит мимо со скоростью, близкой к скорости света, и выполнит те же измерения, расстояние s останется тем же. Иными словами, x и t для этого наблюдателя могут быть (и будут) другими, но они изменятся таким образом, что значение s останется прежним. Рискуя показаться слишком настойчивыми в подчеркивании важности этой мысли, хотим вам напомнить, что наша цель – всегда строить законы физики с использованием инвариантных объектов в пространстве-времени. Расстояние s – именно такой объект. Если это звучит слишком абстрактно, можем повторить сказанное с меньшим количеством математических терминов: правила природы должны выражать соотношения между реальными вещами, а эти вещи находятся в пространстве-времени. Вещь в пространстве-времени сродни объекту, расположенному в комнате. Пространство-время (или комната) представляет собой арену, на которой живет эта вещь. Природа реальных вещей не зависит от точки зрения и мнения наблюдателя, и в этом смысле мы говорим, что она инвариантна. Трехмерным примером чего-то, что не является инвариантной величиной, может служить мерцающая тень объекта в комнате, освещаемой пламенем из камина. Очевидно, что тень меняется в зависимости от того, как горит огонь и где находится камин, но у нас нет никаких сомнений, что за тень отвечает реальный, неизменный объект. Используя пространство-время, мы хотим вывести физику из тени и отследить соотношения между реальными объектами.