litbaza книги онлайнПсихологияМагия чисел. Моментальные вычисления в уме и другие математические фокусы - Майкл Шермер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 15 16 17 18 19 20 21 22 23 ... 56
Перейти на страницу:

А вот и нет! Шанс, что вы правильно выбрали в первый раз, по-прежнему 1 к 3. Вероятность того, что большой приз окажется за другой дверью, увеличивается до 2/3, потому что вероятности в сумме должны давать 1.

Таким образом, изменив свой выбор, вы удвоите шансы на выигрыш! (В задаче предполагается, что Монти всегда будет давать игроку возможность сделать новый выбор, показывая «невыигрышную» дверь, и, когда ваш первый выбор окажется правильным, откроет «невыигрышную» дверь наугад.) Поразмышляйте об игре с десятью дверями. Пусть после вашего первого выбора ведущий откроет восемь «невыигрышных» дверей. Здесь ваши инстинкты, скорее всего, потребуют поменять дверь. Люди обычно ошибаются, думая, что если Монти Холл не знает, где главный приз, и открывает дверь № 3, за которой оказывается коза (хотя мог бы быть и приз), то дверь № 1 с вероятностью в 50 процентов будет нужной. Такое рассуждение противоречит здравому смыслу, тем не менее Мэрилин Савант получила груды писем (многие от ученых, и даже математиков), в которых говорилось, что ей не следовало писать о математике. Конечно, все эти люди были неправы.

ВОЗВЕДЕНИЕ В КУБ

Мы закончим эту главу новым методом возведения в куб двузначных чисел. (Воскресите в памяти тот факт, что куб числа — это число, умноженное на себя дважды. Например, 5 в кубе (обозначается 53) будет равно 5 х 5 х 5 = 125.) Как вы убедитесь, это не намного сложнее, чем умножение двузначных чисел. Метод основан на алгебраическом соотношении

А3 = (A — d)A(A + d) + d2A,

где d — любое число. Как и при возведении в квадрат двузначных чисел, я стараюсь выбрать такое d, чтобы при его сложении (или вычитании) получить число, как можно более близкое к кратному десяти. Например, при возведении в куб числа 13, d = 3, в результате получается:

133 = ((13 — 3) х 13 х (13 + 3)) + (32 х 13).

Поскольку 13 х 16 = 13 х 4 х 4 = 52 х 4 = 208 и 9 х 13 = 117, то мы имеем:

133 = 2080 + 117 = 2197.

Как насчет куба 35? Принимая d = 5, получим:

353 = (30 х 35 х 40) = (52 х 35).

Так как 30 х 35 х 40 = 30 х 1400 = 42 000 и 35 х 5 х 5 = 175 х 5 = 875, имеем

353 = 42 000 + 875 = 42 875.

При возведении 49 в куб задаем d = 1 с целью округления этого числа до 50. Тогда

493 = (48 х 49 х 50) + (12 х 49).

Можно умножить 48 х 49 с помощью метода разложения, но для задач такого типа я предпочитаю метод совместной близости, который будет описан в главе 8. (Можете забежать вперед и взглянуть на него уже сейчас, если хотите!) Используя этот метод, получим 48 х 49 = (50 х 47) + (1 х 2) = 2352.

Умножив это число на 50, получим 117 600 и тогда:

493 = 117 600 + 49 = 117 649.

Вот задача посложнее. Попробуйте возвести в куб число 92.

923 = (90 х 92 х 94) + (22 х 92)

Если вы умеете быстро возводить в квадрат двузначные числа, значит, можете вычислить 92 х 94 = 932 — 1 = 8648, либо применить метод совместной близости, следствие которого 92 х 94 = (90 х 96) + (2 х 4) = 8648. Итак, умножим это число на 9 (как описано в начале главы 8) — 9 х (8600 + 48) = 77 400 + 432 = 77 832. Следовательно, 90 х 92 х 94 = 778 320. Далее, поскольку 4 х 92 = 368, прибавим его и получим окончательный ответ:

923 = 778 320 + 368 = 778 688.

Отметим, что при использовании метода совместной близости для задач на умножение, возникающих при возведении в куб трехзначного числа, малое произведение, которое нужно прибавить (в зависимости от значения d = 1, 2, 3, 4 или 5), будет равно 1 х 2 = 2; 2 х 4 = 8; 3 х 6 = 18; 4 х 8 = 32; 5 х 10 = 50.

Возведем в куб число 96.

963 = (92 х 96 х 100) + (42 х 96)

Произведение 92 х 96 = 8832 можно посчитать разными способами. Чтобы отпраздновать окончание данной главы, применим некоторые из уже изученных нами методов. Я начну с самого, на мой взгляд, сложного, а закончу самым простым. По методу сложения (90 + 2) х 96 = 8640 + 192 = 8832; по методу вычитания 92 х (100 — 4) = 9200 — 368 = 8832; по методу разложения 92 х 6 х 4 х 4 = 552 х 4 х 4 = 2208 х 4 = 8832; по результатам возведения в квадрат 942 — 22 = 8836 — 4 = 8832; по методу совместной близости с основанием 90: (90 х 98) + (2 х 6) = 8820 + 12 = 8832; и по методу совместной близости с основанием 100: (100 х 88) + (–8 х –4) = 8800 + 32 = 8832.

Произведение 42 х 96 = 1536 тоже можно вычислить несколькими способами, такими как 96 х 4 х 4 = 384 х 4 = 1536 или 16 х (100 — 4) = 1600 — 64 = 1536. И наконец, поскольку 8832 х 100 = 883 200, получаем окончательный ответ:

963 = 883 200 + 1 536 = 884 736

УПРАЖНЕНИЕ: ВОЗВЕДЕНИЕ В КУБ ДВУЗНАЧНЫХ ЧИСЕЛ

1. 123 2. 173 3. 213 4. 283

5. ЗЗ3 6. З93 7. 403 8. 443

9. 523 10. 563 11. 653 12. 713

13. 783 14. 853 15. 873 16. 993

Глава 4 Разделяй и властвуй: деление в уме

Деление в уме — чрезвычайно полезный навык как для бизнеса, так и для повседневной жизни. Сколько раз в неделю вы сталкиваетесь с ситуациями, которые требуют от вас что-то равномерно распределить, например счет в ресторане? Точно такой же навык оказывается кстати, когда вы хотите выяснить стоимость одной упаковки корма для собак, или поделить выигрыш во время игры в покер, или узнать, сколько литров бензина можно купить на 20 долларов. Способность делить в уме избавит вас от необходимости постоянно обращаться к калькулятору, когда вам нужно что-либо посчитать.

При выполнении устного деления метод вычисления слева направо вступает в свои права. Именно ему нас учили в школе, так что вы будете заниматься естественным для себя делом. Помню, что, будучи ребенком, думал, будто метод деления слева направо олицетворяет то, какой арифметика должна быть в принципе. Я часто размышлял о том, что если бы в школе нашли способ преподавать и деление справа налево, они, вероятно, так бы и сделали!

ДЕЛЕНИЕ НА ОДНОЗНАЧНОЕ ЧИСЛО

Первый шаг при делении в уме — предположить, из скольких цифр будет состоять итоговый ответ. Чтобы понять, что я имею в виду, попробуйте решить вот такую задачу: 179 ÷ 7

Чтобы разделить 179 на 7, нужно найти такое число Q, которое 7 раз по Q составит 179. Очевидно, что поскольку 179 находится между 7 х 10 = 70 и 7 х 100 = 700, Q должно размещаться между 10 и 100. Стало быть, ответ является двузначным числом. Зная это, сначала определяем наибольшее кратное 10, которое может быть умножено на 7 и в итоге оказаться меньше 179. Нам известно, что 7 х 20 = 140 и 7 х 30 = 210, значит, ответ будет в диапазоне «20 плюс». Отталкиваясь от этого, мы уже можем реально проговорить число «20», так как это будет часть ответа, и она точно не изменится. Далее вычитаем 179–140 = 39. Теперь наша задача сведена к делению 39 х 7. Так как 7 х 5 = 35, что на 4 меньше 39, у нас появилась вторая часть ответа «5» с остатком 4, или, если вы предпочитаете говорить так: 25 и 4/7. Вот как выглядит данный процесс деления[3].

1 ... 15 16 17 18 19 20 21 22 23 ... 56
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?