litbaza книги онлайнРазная литератураПринцип эксперимента. 12 главных открытий физики элементарных частиц - Сьюзи Шихи

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 95
Перейти на страницу:
силы, с помощью которых они взаимодействуют. Эта модель разрабатывалась многими физиками на протяжении десятилетий, а наша нынешняя версия появилась в 1970-х годах. Эта теория – абсолютный триумф: математически элегантная и невероятно точная, но при этом компактная, как принт на кружке. Студенткой меня невероятно увлекало то, насколько полно Стандартная модель, казалось, описывает работу природы на фундаментальном уровне.

Стандартная модель говорит нам, что вся материя, составляющая наше повседневное существование, состоит всего из трех частиц. Мы состоим из двух типов кварков, «верхних» и «нижних», которые формируют наши протоны и нейтроны. Эти два типа кварков вместе с электронами составляют атомы, удерживаемые вместе силами электромагнетизма и сильным и слабым ядерным взаимодействием. Вот и все! Это мы и все, что нас окружает[1]. Но, несмотря на то что мы состоим всего лишь из кварков и электронов, мы – люди – каким-то образом поняли, что в природе есть нечто большее.

Мы достигли триумфа не только благодаря концептуальным и теоретическим успехам. Стереотип о гении-одиночке, теоретизирующем за письменным столом, в значительной степени неверен. На протяжении более чем столетия такие вопросы, как «Что находится внутри атома?», «Какова природа света?» и «Как эволюционирует Вселенная?», рассматривались физиками сугубо практическим образом. Причина, по которой мы можем сегодня сказать, что наверняка знаем ответы на эти вопросы и что наши теоретические модели отражают реальность, заключается не в том, что наши расчеты кажутся верными, а в проводимых нами экспериментах.

Когда многие из нас в детстве сталкиваются с идеей о том, что протоны, нейтроны и электроны составляют окружающий нас мир, очень мало говорится, как именно человечество узнало о материи, силах и вообще обо всем. Протон в миллион миллионов раз меньше песчинки, и далеко не очевидно, как можно работать с чем-то столь малым. Это и есть искусство экспериментальной физики: следовать за нашим любопытством, от зародыша идеи до реального физического оборудования и накопления новых знаний. Тем вечером в астролагере понимание того, что физика нравится мне больше, когда я имею дело с ней лично, привело меня к идее стать физиком-экспериментатором.

В то время как физики-теоретики могут наслаждаться математическими возможностями, эксперименты подводят нас к пугающей границе уязвимости – реальному миру. Вот в чем разница между теорией и экспериментом: идеи физика-теоретика должны учитывать результаты экспериментов, а у физика-экспериментатора – более тонкая работа. Экспериментатор не просто проверяет идеи физиков-теоретиков – он задает собственные вопросы, а также проектирует и создает оборудование, с помощью которого можно на них ответить.

Экспериментатор должен понимать теорию и уметь ее использовать, но он не должен ею ограничиваться. Он должен оставаться открытым для поиска чего-то неожиданного и неизвестного, а также понимать многое другое: от электроники до химии, от сварки до обращения с жидким азотом. Затем он должен объединить эти знания, чтобы манипулировать материей, которую нельзя увидеть. Правда в том, что эксперименты – сложный процесс, с фальстартами и неудачами. Они требуют любопытства и характера. Тем не менее на протяжении всей истории у многих хватало страсти и настойчивости ими заниматься.

За последнее столетие ученые, проводя эксперименты с элементарными частицами, прошли путь от домашних установок, управляемых одним человеком, до самых больших машин на Земле. Эпоха «Большой науки», начавшаяся в 1950-х годах, теперь переросла в проведение экспериментов, в которых участвуют более ста стран и десятки тысяч ученых. Мы строим подземные коллайдеры, состоящие из многокилометрового высокоточного электромагнитного оборудования, в рамках проектов, длящихся более 25 лет и стоящих миллиарды долларов. Мы достигли точки, когда успех науки не зависит только от одной страны.

Наша повседневная жизнь претерпела столь же сильные изменения. В 1900 году в большинстве домов до электричества оставалось 20 лет, лошади были основным видом транспорта, а средняя продолжительность жизни в Великобритании или Соединенных Штатах составляла менее 50 лет. Сегодня мы живем дольше – отчасти потому, что, заболев, можем обратиться в больницу, где есть МРТ, компьютерная томография и ПЭТ-сканеры, помогающие диагностировать болезни, а также целый ряд вакцин, лекарств и высокотехнологичных устройств для нашего лечения. У нас есть компьютеры, Всемирная паутина и смартфоны, которые нас соединяют и создают совершенно новые отрасли и способы работы. Даже окружающие нас товары разрабатываются, дополняются и улучшаются с использованием новых технологий – от шин для наших автомобилей до драгоценных камней в украшениях.

Думая о современных идеях и технологиях, мы редко связываем их с экспериментальной физикой, но эта связь тесна. Все приведенные выше достижения были получены в результате экспериментов, направленных на то, чтобы узнать больше о материи и силах природы, и этот список – лишь верхушка айсберга. Всего за два поколения мы научились управлять отдельными атомами, чтобы создавать настолько маленькие вычислительные устройства, что даже микроскоп с трудом их видит, использовать нестабильную природу материи для диагностики и лечения болезней и заглядывать внутрь древних пирамид с помощью высокоэнергетических частиц из космоса. И все это возможно благодаря нашей способности манипулировать материей на уровне атомов и частиц, знаниям, полученным в результате исследований, движимых любопытством.

Я решила стать физиком-экспериментатором в области физики ускорителей: я специализируюсь на изобретении реального оборудования, которое манипулирует материей в крошечном масштабе. Специалисты по физике ускорителей постоянно открывают новые способы создания пучков, чтобы больше узнать о физике элементарных частиц, но наша работа все больше необходима другим сферам общества. Студенты, друзья и читатели до сих пор удивляются, когда я говорю им, что в их ближайшей больнице почти наверняка есть ускоритель частиц, что их смартфон основан на квантовой механике и что мы можем просматривать веб-страницы только благодаря физике элементарных частиц. Мы строим ускорители частиц для изучения вирусов, шоколада и древних свитков. Наше детальное понимание геологии и древней истории нашей планеты многим обязано исследованиям в области физики элементарных частиц.

Исследования выводят нас за пределы того, что мы знаем и чего ожидаем, приводят к идеям и решениям, которые меняют ход истории. В поиске новых знаний мы сокращаем пропасть между тем, что кажется нам возможным, и тем, что мы считаем невозможным. Именно здесь любопытство приводит к поистине прорывным инновациям. Физика – в частности физика элементарных частиц – предлагает, пожалуй, самые яркие примеры этого феномена. Так как же серия физических экспериментов привела нас ко всем этим особенностям современного мира?

Конечно, были проведены тысячи опытов, и все они каким-то образом внесли свой вклад в наши знания. В этой книге я познакомлю вас с 12 ключевыми экспериментами, которые ознаменовали первые шаги к пониманию мира, в котором мы живем. Мы начнем

1 2 3 4 5 6 7 8 9 10 ... 95
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?