Шрифт:
Интервал:
Закладка:
Информация, здесь изложенная, поможет разработать программу внутренней аналитики и управлять ею: принимать решения, какие данные собирать и хранить, как их получать и интерпретировать, и самое важное — как действовать на их основе.
Неважно, единственный ли вы специалист по анализу и обработке данных в стартапе (и притом вынуждены выполнять еще с десяток других функций) или руководитель отдела с кучей подчиненных в зрелой компании. Если вы работаете с данными и стремитесь действовать быстрее, рациональнее и эффективнее, эта книга поможет создать не просто аналитическую программу, а соответствующую корпоративную культуру.
Cтруктура книги соответствует этапам создания цепочки аналитической ценности. Первые главы посвящены непосредственно данным, в частности выбору правильных источников, обеспечению качества и достоверности. Следующий шаг в этой цепочке — анализ данных. Для качественного выполнения анализа, результаты которого можно будет эффективно использовать в дальнейшей работе, нужны профессионалы, владеющие определенными навыками и инструментами. Для обозначения этой группы сотрудников намеренно используется общий термин «специалисты по аналитической работе», который объединяет сотрудников, занимающихся сбором, обработкой, анализом данных. Это сделано на основании убеждения, что любой член команды — от младшего аналитика без опыта работы до суперзвезды в области анализа данных — вносит свою лепту в общее дело. Мы подробнее остановимся на том, какими компетенциями должен обладать хороший аналитик, как можно развивать профессиональные навыки в этой области, а также на организационных аспектах — как помочь специалисту по аналитической работе стать частью команды или подразделения. Следующие главы посвящены непосредственно аналитической работе: выполнению анализа, разработке показателей, A/B-тестированию и рассказыванию истории. Затем мы перейдем к следующему этапу в цепочке аналитической ценности — принятию решений на основе результатов анализа. Мы рассмотрим, что может затруднять процесс принятия решения и как с этим бороться.
На протяжении всей книги прослеживается основная мысль: суть процесса управления компанией на основе данных не сводится к данным как таковым или к обладанию самым современным набором инструментов по работе с большими данными. Самое важное в этом — корпоративная культура. Культура организации — доминирующий фактор, который устанавливает ожидания относительно того, насколько демократичным будет процесс работы с данными, как эти данные станут использоваться внутри организации, какие ресурсы, в том числе образовательные, станут инвестироваться в использование данных как стратегического актива компании. По этой причине в главе, посвященной корпоративной культуре, мы объединим все уроки, извлеченные на разных этапах цепочки аналитической ценности. В одной из последних глав обсудим роль двух относительно новых позиций в высшем руководстве компаний: CDO (Chief Data Officer, директор по управлению данными) или CAO (Chief Analytics Officer, директор по аналитике). Тем не менее рядовые сотрудники тоже в значительной мере влияют на формирование корпоративной культуры организации, поэтому на протяжении книги мы будем напрямую обращаться к специалистам по работе с данными, подчеркивая, что именно они способны сделать для повышения своего влияния на эффективность деятельности компании. В компании, для которой управление на основе данных не просто модная тенденция, сотрудники на всех уровнях уделяют большое внимание качеству данных и их оптимальному использованию при принятии взвешенных решений и для повышения конкурентного преимущества компании.
В книге используются следующие условные обозначения.
Выделение курсивом
Применяется для обозначения новых терминов, адресов сайтов (URL), адресов электронной почты, имен файлов и расширений файлов.
Моноширинный шрифт
Применяется для обозначения программных элементов, таких как переменные, названия функций, базы данных, типы данных, переменные окружения, утверждения и ключевые слова.
Моноширинный шрифт с полужирным выделением
Применяется для обозначения команд или другого текста, который должен внести пользователь.
Моноширинный шрифт с курсивом
Применяется для обозначения текста, который нужно заменить переменными пользователя или переменными, которые определяются контекстом.
Этот элемент обозначает совет или рекомендацию.
Этот элемент обозначает общую информацию.
Без данных вы просто еще один человек с собственным мнением.
Управление на основе данных подразумевает формирование инструментов, способностей и, что самое важное, корпоративной культуры, которая опирается на данные. В этой главе мы рассмотрим, что отличает компанию с управлением на основе данных. Начнем с базовых требований к их сбору и доступности. Затем остановимся подробнее на весьма важном отличии — подготовке отчетов и получении оповещений в противовес процессу анализа. Существует много различных типов перспективного анализа, отличающихся по степени сложности. Мы уделим некоторое время изучению этих типов с точки зрения их «уровня аналитики» и «аналитической зрелости», а также обсудим основные признаки «аналитически зрелой» организации. Какой она должна быть?
Начнем с ответа на первый вопрос: что означает для компании управление на основе данных?
Давайте сразу озвучим несколько очевидных требований.
Требование № 1: в компании должен осуществляться сбор данных.
Несомненно, данные — ключевой компонент. При этом речь идет не о любых данных, а о правильных. Необходимо, чтобы набор данных соответствовал вопросу, который требуется решить. Помимо этого, данные должны быть своевременными, точными, чистыми, объективными, и, что важнее всего, они должны заслуживать доверия.