Шрифт:
Интервал:
Закладка:
Подобно тому, как Земля не плоская, должно быть искривлено и само пространство-время.
Гений Эйнштейна проявился в том, что он увидел такую возможность, — однако же он понятия не имел, как описывать это искривленное пространство-время. К счастью, это смогли сделать другие. В начале XIX века независимо друг от друга Янош Бойяи, Николай Лобачевский и Карл Гаусс разработали геометрию искривленных пространств, где изначально параллельные линии могут сходиться и расходиться. Используя эту математику, можно составить карту (иначе называемую системой координат), описывающую поверхность, а также своего рода масштаб (по-научному называемый метрикой), что дает возможность вычислять реальные расстояния на такой поверхности по координатам. Однако эта математика позволяла сделать много больше, и скоро другие ученые, включая Германа Грассмана и Бернхарда Римана, разработали «неевклидову» геометрию, которую можно было применять и к трехмерному пространству (типа того, что мы видим вокруг себя), и даже к четырехмерному пространству-времени[31]. Математическое сообщество испытало шок, когда выяснилось, что искривленные пространства, в которых параллельные прямые могут встретиться, а сумма углов треугольника может не быть равной 180 градусам, оказывается, осмысленны и полезны, а их теория — самосогласованна. Эти искривленные пространства обычно считали очень абстрактными, странными и не имеющими ничего общего с реальной картиной мира.
Эйнштейн был достаточно дерзок для того, чтобы опровергнуть это предубеждение. Если пространство-время искривлено так же, как поверхность Земли, и так же, как это описывается математикой Римана, то природу гравитации можно объяснить легко и элегантно: искривление пространства-времени способно изменить длину пути в нем. Следовательно, самый длинный путь, то есть тот, по которому будет следовать объект, тоже изменится. Поскольку гравитация в действительности есть не сила, а изменение структуры пространства-времени, то на все объекты она действует совершенно одинаково. «Совпадение», то есть равенство скоростей всех падающих на землю предметов, обнаруженное Галилеем, объясняется в рамках этой гипотезы легко и красиво.
Рецепт Эйнштейна для нахождения траекторий, соответственно, состоял в том, чтобы считать, что при отсутствии сил негравитационного происхождения объекты изберут пути, при следовании по которым собственное время T (отмеряемое «сердечными часами») максимально. Но вместо того чтобы вычислять T по формуле, приведенной в коане «ДОРОГИ, КОТОРЫЕ МЫ ВЫБИРАЕМ», T нужно вычислять по похожей, но более сложной формуле, включающей кривизну пространства-времени. T выражалось бы той простой формулой, лишь если бы пространство-время не имело кривизны. Этот путь, если его изобразить только в пространстве или нанести на карту, может совершенно не выглядеть прямолинейным. Но на самом деле он настолько прям — или, точнее, настолько длинен, — насколько возможно. Если вернуться к вашему прыжку с обрыва, то окажется, что траектория книги и ваша траектория в пространстве-времени прямолинейны. Это пространство-время вокруг вас искривлено.
Следование этой логике приводит к радикально новому взгляду на гравитацию и на то, что значит оставаться в состоянии покоя. Рассмотрим систему отсчета, находящуюся в состоянии покоя на самом краю обрыва. Является ли эта система инерциальной? Нет. Принцип эквивалентности Эйнштейна говорит нам, что по-настоящему инерциальной системой является свободно падающая система. Но эта свободно падающая система отсчета ускоряется в направлении земли относительно системы отсчета, покоящейся на краю обрыва. Если мы перевернем ситуацию, окажется, что система отсчета, расположенная на краю обрыва, ускоряется относительно инерциальной системы, и, следовательно, в системе на краю обрыва мы должны ощущать «фиктивные» силы. И ведь мы их действительно ощущаем! Мы чувствуем, что нас тянет вниз таинственная сила, взявшаяся как бы ниоткуда. Это гравитация! В теории Эйнштейна гравитация — фиктивная сила, не более и не менее реальная, чем центробежная сила, действующая на наши руки, когда мы крутимся в пируэте, или вжимающая нас в кресло в самолете, попавшем в полосу турбулентности. Это в действительности способ, которым кривизна пространства-времени проявляет себя: инерциальные системы, где пространство-время выглядит не искривленным, все еще присутствуют, но их взаимоотношения друг с другом интересным образом модифицируются. Так, когда мы находимся в гравитационном поле и не падаем на притягивающее тело, это означает, что мы ускоряемся относительно инерциальной системы и чувствуем притяжение. Притяжение, которое вы чувствуете прямо сейчас и которое тянет вас вниз, сродни дополнительному весу, ощущаемому вами в поднимающемся лифте, только это очень большой лифт!
Что же, однако, определяет кривизну пространства-времени? Материя[32]. Чем больше материи, тем больше пространство-время искривляется вокруг нее. То обстоятельство, что Земля притягивает вас (и все остальное), эквивалентно тому факту, что все вещество на Земле искривляет пространство-время особым образом — таким, что самый длинный путь и, следовательно, тот путь, по которому объекты естественным образом движутся, смещается к центру Земли и уже в трехмерном пространстве не кажется прямым. Завершая картину, Эйнштейн вывел в своей общей теории относительности уравнение, связывающее кривизну пространства-времени и наличие материи. (Надо отметить, что этот вывод он сделал после многих лет напряженного труда, о котором сказал: «По сравнению с этой проблемой специальная теория относительности — детская игра»[33].) Из общей теории относительности следуют все результаты теории гравитации Ньютона, но из нее также следуют новые и поразительные явления, которые не имели объяснений в рамках предыдущих теорий.
Когда вы сидите под обрывом, воспользуйтесь моментом и оцените твердость земли, и тогда вы, возможно, поймете, почему Макс Борн назвал сформулированную Эйнштейном общую теорию относительности «величайшим достижением человеческого мышления в познании природы»[34].
Но это лишь слегка приоткрыло завесу тайны, и мы сделали только первый шаг на своем пути.
Часть 2
Неизвестный путь через загадочную местность
Разгадав так много секретов, мы поверили в то, что нет ничего непознаваемого. Но оно тем не менее есть, спокойно сидит и потирает руки.
Л. Менкен «Отчет меньшинства»
10. Освобождение джинна
(Аравийская пустыня, 1610