litbaza книги онлайнДомашняяБольшое космическое путешествие - Дж. Ричард Готт

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 17 18 19 20 21 22 23 24 25 ... 131
Перейти на страницу:

Как определить общую энергию на единицу времени на единицу поверхности, соответствующую площади под одной из этих кривых? Мне потребовалось бы просуммировать вклад от всех различных длин волн, то есть всю площадь под конкретной кривой. Для этого можно воспользоваться интегральным исчислением – опять же, спасибо Исааку Ньютону. Если интегрировать функцию Планка по всем длинам волн, то получится еще одно красивое уравнение.

Общая энергия, излучаемая в секунду на единицу площади = σT4, где σ = 2π5k4/(15c2h3) = 5,67 × 10–8 ватт на квадратный метр, причем T – это температура в кельвинах. Перед нами закон Стефана – Больцмана. Йозеф Стефан и Людвиг Больцман были двумя титанами физики XIX века. К сожалению, Больцман свел счеты с жизнью, когда ему было 62 года. Но сохранился этот закон. Если интегрировать функцию Планка, то получится значение постоянной (греческая буква «сигма»). Это колоссально. Как Стефану и Больцману удалось сформулировать этот закон, если Планк еще не вывел свою формулу? Стефан открыл закон экспериментально, а Больцман сформулировал, исходя из соображений о термодинамике.

Если общая энергия, излучаемая в секунду на единицу площади равна σT4, то, если удвоить температуру, поток излучаемой энергии возрастет с коэффициентом 24 = 16.Утроим температуру, и что получится? 34 = 81.Учетверим – и получится 44 = 256.Эта тенденция прослеживается на рис. 5.1, где видно, насколько увеличиваются кривые при возрастании температуры.

Вот как можно запомнить принцип работы этой формулы. Допустим, мы взяли какое-то количество теплового излучения и положили его в коробочку. Теперь будем медленно сжимать коробочку, пока она не станет вдвое меньше. Количество фотонов в коробочке останется тем же, но объем коробочки уменьшится в 8 раз и, соответственно, количество фотонов на кубический сантиметр возрастет в 8 раз. Но при сжатии коробочки длина волны каждого фотона также укорачивается вдвое. В результате тепловое излучение коробочки становится вдвое жарче, так как пиковое значение длины волны уменьшилось вдвое. Удваивается энергия каждого фотона и, соответственно, энергия коробочки. Увеличение энергии каждого фотона происходит за счет той энергии, что затрачивается на сжатие коробочки, эта энергия противодействует давлению излучения, что внутри коробочки. Таким образом, плотность энергии в коробочке будет в 8 × 2 = 16 раз выше, чем ранее, а 16 = 24. Следовательно, энергетическая плотность теплового излучения пропорциональна температуре в четвертой степени, или T4.

Давайте определимся еще с некоторыми терминами. Светимость – это общая энергия, излучаемая звездой в единицу времени. Светимость измеряется в ваттах, точно как у лампочки накаливания. Светимость 100-ваттной лампочки равна 100 ватт. Светимость Солнца равна 3,8 × 1026 ватт. Мощная такая лампочка.

Теперь предложу задачку. Допустим, Солнце обладает такой же светимостью, что и другая звезда, чья поверхностная температура – 2000 К. Какова температура Солнца? В данном примере давайте округлим ее до 6000 К. Температура другой звезды всего 2000 К, то есть она гораздо прохладнее и не может излучать столько же энергии на единицу площади в единицу времени, сколько Солнце, но я заявляю, что светимость у этой звезды точно как у Солнца. Как такое может быть? Беру вторую звезду, вырезаю с нее лоскут площадью 1 см2, с температурой 2000 К, затем вырезаю с Солнца такой же лоскут площадью 1 см2, с температурой 6000 К – втрое жарче. Сколько энергии в единицу времени будет излучать такой лоскут на Солнце по сравнению с лоскутом такой же площади на звезде с температурой 2000 К? В 81 раз больше энергии. Каким же образом вторая звезда может излучать в секунду такую же суммарную энергию, как и Солнце? Если у этих звезд одинаковая светимость, то они должны отличаться чем-то еще, кроме температуры. Дело в том, что вторая звезда, сравнительно холодная, должна иметь гораздо более обширную поверхностную площадь, с которой льется излучение. Фактически ее поверхностная площадь должна быть в 81 раз больше, чем у Солнца. Это должен быть красный гигант, который за счет огромной поверхностной площади восполняет дефицит температуры. Теперь вернемся к нашим уравнениям. Чему равна площадь поверхности сферы? Она равна 4πr2, где r – радиус сферы. Возможно, вы изучали это уравнение в средней школе. Дальше начинается самое интересное. Если светимость – это энергия, излучаемая в единицу времени, а энергия, излучаемая в единицу времени на единицу площади, равна σT4, то мы получили уравнение, позволяющее вычислить светимость Солнца:

LСолн = σTСолн4 × (4πrСолн2).

Можно составить схожее уравнение и для другой звезды. Обозначим ее светимость звездочкой, L*. В таком случае уравнение для вычисления светимости этой звезды – L* = σT*4 × (4πr*2). Теперь у меня есть уравнения для обеих. Более того, я постулировал, что LСолн равна L*. Я привел именно такой пример, чтобы подчеркнуть, что мне даже не требуется знать поверхностную площадь Солнца – в данной задаче речь идет лишь о соотношениях величин. Можно удивительно много узнать о Вселенной, просто присмотревшись к соотношениям.

Давайте разделим два уравнения: LСолн/L* = σTСолн4 × (4πrСолн2)/ σT*4 × (4πr*2). Что дальше? Я сокращу равные множители в числителе и знаменателе дроби в правой части уравнения. Первым делом сокращу постоянную. Меня не интересует ее конкретное значение, поскольку мы сравниваем два объекта и эта константа присутствует в характеристиках обеих звезд. Поэтому ее можно сократить. Кроме того, сокращается число 4 и число π. Переходим в левую часть уравнения: что такое LСолн/L*? Это выражение равно 1, поскольку, как было заявлено, две звезды обладают одинаковой светимостью и их соотношение равно 1. Итак, остается значительно более простое уравнение: 1 = TСолн4 × rСолн2/T*4 × r*2. Температура Солнца равна 6000 К, а температура другой звезды – 2000 К. Естественно, 60004, деленное на 20004, равно 34, то есть 81. Получается, 1 = 81rСолн2/r*2. Умножим обе части уравнения на r*2. Имеем r*2 = 81rСолн2. Извлечем квадратный корень из обеих частей уравнения, получится r* = 9rСолн. Радиус более холодной звезды в 9 раз больше, чем у Солнца! Это ответ. Если переосмыслить его в терминах площади, то поверхностная площадь у этой звезды должна быть в 81 раз больше солнечной, а радиус – в 9 раз больше солнечного. Члены в уравнении остаются прежними, но мы подставляем разные переменные в разные части уравнения. Вот и все, чем мы здесь занимались.

1 ... 17 18 19 20 21 22 23 24 25 ... 131
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?