Шрифт:
Интервал:
Закладка:
Впрочем, среди восьмидесяти двух первых элементов выделяются два, которые не обладают стабильной формой: это Технеций (номер 43) и Прометий (номер 61). Два наиболее долгоживущих изотопа Технеция – это 97Te и 98Te, оба они в среднем способны существовать примерно 4,2 миллиона лет, однако самый распространенный изотоп (обнаруживаемый, наряду с Ураном, в настуране9) – это 99Te, присутствующий в мельчайшей концентрации примерно в 1 часть на 4 триллиона, и при этом срок его жизни – лишь 211 000 лет. Это означает, что со времен возникновения Земли – а это случилось 4,57 миллиарда лет тому назад, – Технеция просто не могло остаться, и эти изотопы, по всей вероятности, возникли в ходе естественных процессов, о которых мы поговорим в главе 6. Прометий, подобным образом, в крошечных количествах встречается в урансодержащих материалах; наиболее стабильный его изотоп – 145Pm, среднее время жизни которого составляет лишь 17,7 года.
После Свинца (номер 82) ни один из встречающихся в природе элементов (номера 83–94) не имеет даже одного стабильного изотопа, хотя некоторые из них отличаются завидной долговечностью и многое повидали еще с возникновения Солнечной системы. Рекордсменом в данном случае станет Висмут‐209 (83-й элемент) с установленным сроком существования в 1,9 × 1019 лет, что более чем в миллиард раз превышает возраст Вселенной – он еще долго нас не покинет. Двое других изотопов-долгожителей из этой части Периодической таблицы – это Торий‐232 со временем жизни в 14 миллиардов лет (в пределах нескольких процентных пунктов от возраста Вселенной) и Уран‐238, срок жизни – 4,47 миллиарда лет, почти ровесник Земли. Как мы увидим в главе 6, «время жизни» в данном случае – это не конкретное число. Точно так же, как у людей средняя продолжительность жизни не означает, что каждый умирает в 78,6 года – много кто перешагнул этот рубеж, – поэтому вполне можно предположить, что какие-то из этих трех элементов присутствовали на Земле с самых первых дней ее формирования. Если учесть радиоактивные изотопы, которые обладают как стабильной, так и нестабильной формой, то в общем итоге у нас тридцать четыре различных изотопа, нестабильные, но способные прожить более ста миллионов лет. Эти неустойчивые, но долговечные изотопы удачно названы «первичными», поскольку они присутствовали в облаке, благодаря сгущению которого возникла Солнечная система.
Для других девяти самых тяжелых элементов характерен намного меньший срок существования – от 80,8 миллиона лет у Плутония‐244 (номер 94) до всего лишь 22 минут у Франция‐223 (номер 87). Даже десятки дополнительных нейтронов, которые пытаются удержать их ядра от распада, не могут преодолеть огромное электростатическое отталкивание протонов, стиснутых в крошечном пространстве. Эти (и прочие) изотопы, встречающиеся в природе, возникли не из материи, сформировавшей Землю, а постоянно образуются благодаря разрушению долгоживущих радиоактивных изотопов других элементов. Опять же, если учесть все виды элементов, порожденных непрестанно протекающим ядерным распадом, то на Земле таких изотопов пятьдесят три.
Таким образом, общее число изотопов, которые мы можем обнаружить в естественных условиях среди девяноста четырех элементов, составляет 339. Выражение «в естественных условиях» слегка обманчиво, поскольку оно относится к очень ограниченной сфере природы, представленной нашей Землей. В ядерных реакторах, полыхающих в недрах массивных звезд, в яростных взрывах, которыми оканчивается их жизнь, и в других колоссальных энергетических событиях, происходящих в космосе, например таких, как слияние двух нейтронных звезд, несомненно, возникает еще больше разновидностей изотопов (см. гл. 16). Однако все эти разновидности отличаются кратким временем жизни в сравнении с возрастом Земли, и в минералах, скрытых в земной коре, ни одна из них не присутствует.
Искусственные изотопы
Конечно же, многие из веществ современного мира не встречаются в естественных условиях – мы сами сочетаем элементы, формируем новые молекулы и создаем все эти вещества, от полиэтилена для пакетов, в которых носим бакалейные товары, до хлорфторуглеродов, на которых работают наши кондиционеры, и стрептомицина, призванного уничтожать бактерии. Все эти продукты проходят череду химических взаимодействий, представляющих собой перераспределение и соединение атомов в особых пропорциях посредством взаимного воздействия электронов друг на друга. Энергии, возникающие при данных реакциях, измеряются в электронвольтах (эВ) на молекулу (гл. 4). А если повысить энергию в десять миллионов раз или около того, возможно ли преобразить элементы, превратив один в другой, или даже создать совершенно новые изотопы?
Трансмутация элементарных форм была одним из высших стремлений алхимии, которую практиковали в Китае, Индии, Европе и арабском мире в донаучную эпоху. Само слово пришло к нам из средневекового арабского al-khīmiyā, где «аль» – это артикль, а последнее слово происходит от древнегреческого khemia, в буквальном смысле – «искусство превращения металлов». Первые письменные свидетельства об этой практике, в чем есть определенная ирония, приписываются автору, творившему под псевдонимом Демокрит (историкам он известен как Псевдо-Демокрит) из эллинистического Египта в I веке нашей эры. Цели алхимии выходили далеко за пределы набившего оскомину клише о превращении Свинца в Золото – алхимики искали и эликсир бессмертия, и лекарство от всех болезней (его называли «панацеей», от греческих слов pan [ «все»] и akos [ «лекарство»]). Конечно же, они не преуспели – ведь у них отсутствовала технология, позволяющая увеличить энергию в миллионы раз.
Однако в начале 1934 года, менее чем за два года до того, как был открыт нейтрон и мы наконец-то составили картину атомного ядра, Фредерик и Ирен Жолио-Кюри (дочь Марии Кюри) создали первые «искусственные» изотопы, устроив бомбардировку стабильных изотопов быстрыми ядрами Гелия – так появились неизвестные прежде изотопы Азота, Фосфора и Кремния. Это воплощение мечтаний древних алхимиков было признано уже в следующем году, когда ученые удостоились Нобелевской премии по химии. За последние девяносто лет были созданы не только новые изотопы, но и двадцать четыре совершенно новых элемента, поэтому помимо девяноста четырех атомов, встречающихся в природе, современная Периодическая таблица включает еще и элементы, созданные в искусственных условиях и занимающие ячейки с 95 по 118. Общее число изотопов уже перешло за 3330, время жизни 620 из них превышает час, и некоторые из них играют важную роль в медицине, производстве энергии и других технических областях.
Интересные изотопы
Неудивительно, что физикам-ядерщикам интересны все изотопы. Но есть среди них и такие, интерес к которым более широк, поскольку их можно применить в технологии – а также, как мы еще увидим в последующих главах, при воссоздании истории. В основе всей живой материи