Шрифт:
Интервал:
Закладка:
Отрицательный для обычных кабелей эффект рассеяния части передаваемой энергии в виде тепла используется как полезный в нагревательных кабелях. Причем преобразование электрической энергии в тепло происходит самым оптимальным и экономичным способом. Преобразование полное, бесшумное, без использования дополнительных веществ (топлива, окислителя).
Нагревательные кабели имеют достаточно развитую номенклатуру и находят применение в самых разнообразных установках и устройствах. Но все же они относятся к своеобразным кабельным изделиям и в специальной литературе практически отсутствуют работы по конструированию, расчету и применению нагревательных кабелей.
ВИДЫ КАБЕЛЕЙ ПО СХЕМЕ ТЕПЛОВЫДЕЛЕНИЯ
Резистивные линейные — нагревательные кабели, в которых выделение тепла происходит за счет эффекта Джоуля-Ленца при прохождении электрического тока по нагревательной жиле. Кабель конструируется таким образом, чтобы в нагревательной жиле имело место полное падение приложенного напряжения, но при этом не происходил перегрев элементов кабеля выше допустимых значений.
Длина нагревательной секции обычно составляет от нескольких до сотен метров. Кабели данного типа могут иметь одну, две или несколько параллельных нагревательных жил, имеющих линейную или спиральную форму. Произвольная резка кабеля по длине недопустима.
Тепловая мощность резистивных линейных кабелей при нагреве незначительно уменьшается, причем величина изменения зависит от величины температурного коэффициента сопротивления материала нагревательной жилы. Наименьшие изменения сопротивления наблюдаются у сплавов высокого сопротивления (ТКр+0,0001), наибольшие у меди (ТКр+0,004)
Резистивные зональные нагревательные кабели по принципу действия не отличаются от предыдущих, но коренным образом отличаются по конструктивному исполнению. Они содержат две параллельных изолированных токопроводящих жилы.
Изоляция токопроводящих жил имеет периодически расположенные «окна», смещенные друг относительно друга с заданным шагом (обычно около 1 м). Поверх этих двух жил накладывается тонкая проволочная спираль из сплава высокого сопротивления.
В «окнах» спираль замыкается на токопроводящие жилы, в результате кабель представляет набор подключенных параллельно к токопроводящим жилам сопротивлений (резисторов). На каждом из них имеет место полное падение приложенного напряжения. Зональный кабель удобен тем, что он может быть разрезан в любом месте. Минимальная длина нагревательной секции — 1,5–2 м.
Максимальная длина определяется сечением токопроводящих жил и линейной мощность. Поскольку нагревательный элемент резистивных зональных кабелей выполняется из сплавов высокого сопротивления, их мощность практически не зависит от температуры, поэтому их называют также кабелями постоянной мощности.
Саморегулирующиеся кабели имеют конструкцию, частично сходную с конструкцией резистивных зональных кабелей. Они также содержат две параллельные токопроводящие жилы, но не изолированные. Токопроводящие жилы либо заключены в полимерную проводящую матрицу, либо соединяются через спиральные полимерные проводящие нити.
Эффект саморегулирования достигается за счет того, что тепловыделяющий элемент кабеля, выполненный из полимерного проводящего материала, значительно увеличивает свое сопротивление при нагреве. Величина ТКр проводящего полимера достигает 0,05-0,075, т. е в 12–18 раз больше, чем у меди.
Индуктивные нагревательные кабели в своей конструкции содержат ферромагнитные элементы, а токопроводящие изолированные жилы наложены вокруг ферромагнитных элементов в виде обмотки, индуцирующей в сердечнике переменный магнитный поток.
Эффект тепловыделения достигается как за счет резистивных потерь в обмотке, так и за счет резистивных потерь в сердечнике, возникающих от наведенных токов.
Соотношение тех и других потерь определяется конструкцией кабеля. Потери в сердечнике могут составлять 80–20 % общих потерь в кабеле. В первом случае потери в обмотке невелики, и она незначительно нагревается за счет собственных потерь, что позволяет получить заметно большую, по сравнению с резистивными кабелями, линейную мощность.
Метод обогрева трубопроводов с помощью «СКИН-эффекта» также может рассматриваться как один из вариантов индуктивного кабеля. В этом случае роль индуктирующей обмотки выполняет изолированная жила большого сечения, а роль индуктора — стальная труба, в которой эта жила расположена. Тепло выделяется как в жиле, так и в трубе за счет наведенных вихревых токов.
Строение саморегулирующего кабеля для водопровода
Саморегулирующиеся кабели для водопровода — это металлополимерная матрица. В данной системе провода только проводят ток, а греется полимер, который находится между двух проводников. Этот полимер имеет интересное свойство — чем выше его температура, тем меньше тепла он выделяет, и наоборот, остывая, он начинает выделять больше тепла. Происходят эти изменения независимо от состояния соседних участков кабеля. Вот и получается, что он сам регулирует свою температуру, потому его так и назвали — саморегулирующийся.
У саморегулирующихся (самогреющих) кабелей сплошные плюсы:
они могут пересекаться и не перегорят;
их можно резать (есть маркировка с линиями реза), но требуется затем сделать оконечную муфту.
Минус у них один — высокая цена, но срок службы (при соблюдении правил эксплуатации) порядка 10 лет.
ОБЛАСТИ ПРИМЕНЕНИЯ НАГРЕВАТЕЛЬНЫХ КАБЕЛЕЙ
Устройства, в которых используются нагревательные кабели, могут разительно отличаться друг от друга по размерам, рабочей температуре и тепловой мощности. Поэтому диапазон областей применения нагревательных кабелей очень широк.
Обогреваемые предметы обихода — электрические одеяла, грелки, сидения с подогревом, обогреваемая одежда и обувь. Как правило, имеют небольшую мощность (10–50 Вт) и рабочую температуру, безопасную для человека, т. е. не выше 50 °C. В эту же группу могут быть отнесены бытовые нагреватели малой мощности: подогреватели детского питания, размораживатели холодильников, использующие нагревательные кабели.
Системы обогрева помещений — в них нагревательные кабели используются как тепловыделяющий элемент, более или менее равномерно размещенный по площади помещения. В случае необходимости кабели могут монтироваться на стенах и на потолке. Наилучший вариант установки кабелей с точки зрения условий теплоотдачи, накопления тепла, сохранности и безопасности — это установка кабеля в толщу цементной стяжки, укладываемой под декоративным покрытием пола.
Температура на обогреваемой поверхности обычно равна 22–26 °C, но может достигать 35 °C. Удельная мощность систем обогрева через пол варьируется в диапазоне 70-150 Вт/м2. Аккумулирующие системы имеют мощность до 200 Вт/м2. Суммарная мощность системы может иметь весьма широкие пределы: от 100 Вт до десятков и сотен киловатт.
Антиобледенительные системы для тротуаров, открытых лестниц, пандусов. Как и в предыдущем случае кабели укладываются в толщу бетонной подосновы. Эти системы функционируют только в то время, когда на поверхность указанных объектов выпадает снег или образуется наледь.
Удельная мощность систем обогрева открытых поверхностей варьируется в диапазоне 200–350 Вт/м2. Суммарная мощность системы колеблется в пределах от нескольких до десятков сотен киловатт.
Сюда же относятся антиобледенительные системы для спортивных сооружений (футбольных полей, беговых дорожек, ипподромов, теннисных кортов), опасных участков транспортных магистралей (подъемов, спусков, крутых поворотов), взлетно-посадочных полос. Удельная мощность обогрева данных систем может достигать 500 Вт/кв.м., а суммарная мощность — нескольких мегаватт.
Антиобледенительные системы для крыш служат для предотвращения: закупоривания льдом путей стока