litbaza книги онлайнДомашняяE=mc2. Биография самого знаменитого уравнения в мире - Дэвид Боданис

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 18 19 20 21 22 23 24 25 26 ... 85
Перейти на страницу:

К этому времени работа его приняла новое направление. Уравнение E=mc2 было лишь малой частью всей специальной теории относительности. В 1915 году Эйнштейн занимался совершенствованием теории еще более величественной, столь мощной, что теперь уже специальная теория относительности составляла лишь малую ее часть. (В «Эпилоге» приводятся некоторые сведения об этом труде 1915 года — «В сравнении с этой проблемой, исходная теория относительности — просто детская игра»). Эйнштейну еще предстояло вновь обратиться к своему уравнению — ненадолго, — но уже в гораздо более зрелые годы.

И здесь рассказываемая нами история совершает крутой поворот. Начальная теоретическая разработка уравнения завершилась, персональный вклад Эйнштейна в то, о чем идет наш рассказ, постепенно начинает сходить на нет. Физики Европы согласились с истинностью E=mc2: с тем, что вещество можно, в принципе, подвергнуть преобразованию, которое позволит извлечь «замороженную» в нем энергию. Однако как этого добиться, никто по-настоящему не знал.

Правда, один намек на это имелся. Его давали странные объекты, исследованием которых занимались Мария Кюри и другие: такие тяжелые металлы, как радий и уран, а также другие вещества, способные непонятным образом неделю за неделей и месяц за месяцем источать энергию, никогда не исчерпывая ее «скрытый» в них источник.

Теперь изучать происходящее с ними начали многие лаборатории. Однако для того, чтобы обнаружить механизмы, создающие эти огромные выбросы энергии, недостаточно было продолжать смотреть лишь на поверхность вещей, просто заниматься измерением веса, окраски или внешних химических свойств загадочно теплых радия или урана.

Нет, ученым следовало пойти внутрь, в самое сердце этих веществ. Это, в конечном счете, и показало им, как подобраться к энергии, обещанной уравнением E=mc2. Но что же обнаружили они, вглядываясь в мельчайшие внутренние структуры обычного вещества?

Глава 8. Внутри атома

Университетских студентов 1900 года учили тому, что обычное вещество — то, из которого состоят кирпичи, сталь, уран и все прочее, — и само состоит из мельчайших частиц, именуемых атомами. Однако, из чего состоят атомы, этого не знал никто. Общее мнение сводилось к тому, что они подобны сплошным, блестящим шарикам, вроде тех, которые крутятся в шарикоподшипниках, — что атомы это такие посверкивающие сущности, заглянуть внутрь которых невозможно. И только в 1901 году, благодаря исследованиям Эрнеста Резерфорда, рослого мужчины с медвежьим басом, работавшего в Манчестерском университете, об атомах возникли представления более ясные.

Резерфорд оказался в Манчестере, а не в Оксфорде и не в Кембридже, не потому, что происходил из провинциальной Новой Зеландии и говорил с акцентом простолюдина. Ученому, умеющему держаться достаточно скромно, такие недостатки легко прощают. Проблема состояла, скорее, в том, что, еще обучаясь в Кембридже, Резерфорд показал себя не способным почтительно относиться к старшим. А как-то раз он и вовсе выступил с предложением создать совместное предприятие, которое торговало бы одним из его изобретений, и это предложение было приравнено к смертному греху. И однако же, причина, по которой он оказался ученым, впервые сумевшим заглянуть внутрь атома, состояла, в значительной мере, в том, что Резерфорд был человеком, хорошо понимавшим, что такое дискриминация, и это понимание сделало его одним из самых мягких руководителей, какие только встречаются на свете. Его громогласность была не более чем камуфляжем. Резерфорд умел воспитывать толковых помощников — одним из главных его экспериментов руководил молодой человек, в конечном итоге доведший до совершенства чрезвычайно полезный портативный детектор радиации, устройство которого было придумано самим Резерфордом: издающий громкие щелчки счетчик, коему обязан своей славой Ханс Гейгер.

Совершенное ими открытие описывается в современных школах так часто, что нам уже трудно представить себе, насколько неожиданным оно оказалось. Резерфорд обнаружил следующее: сплошные непроницаемые атомы на самом деле почти полностью пусты. Представьте себе, что метеор падает в Атлантический океан и вместо того, чтобы так в нем и остаться, ударившись, в конце концов, об океанское дно, с громовым ревом вылетает назад. Подумайте о том, как трудно преодолеть устоявшиеся представления и понять: единственное объяснение происшедшего состоит в том, что никакой воды под поверхностью Атлантического океана на самом-то деле нет. Напротив, — по аналогии с тем, что обнаружил Резерфорд, — поверхность океана это лишь тонкая пленка жидкости, а под ней, там, где, как мы всегда полагали, плещут глубинные волны, струятся течения и вообще находятся тонны воды, там… пусто.

Ничего, кроме пустого воздуха, там нет и, если бы в нем находилась телекамера, она показала бы нам, как метеор, пробив внешнюю пленку, падает в пустом пространстве. И только на самом дне океана находится некое мощное, чрезвычайно компактное устройство, которое способно схватить падающий метеор и швырнуть его назад, в открытое пространство. Примерно так же выглядит атом с его укрытым в самом центре ядром. Лишь вблизи внешней оболочки атома мечутся электроны, участвующие в обычных реакциях, таких как сгорание куска дерева в огне. Однако от центрального ядра атома, мерцающего в самой глубине совершенно пустого пространства, они далеки.

Если мы снова уподобим атомы шарикам, из которых состоит подшипник, то можно будет сказать следующее: Резерфорд обнаружил, что шарики эти почти полностью полые. Только в самой середке их кроется крошечная песчинка, именуемая ядром. Открытие неутешительное — оказывается, атомы состоят по преимуществу из пустоты! — однако само по себе оно ничуть не объясняет, какое отношение имеет к такому атому уравнение E=mc2. «Сплошные» электроны, образующие внешнюю оболочку атома, не имеют ни малейшего намерения избавляться от своего материального существования и обращаться в вырывающиеся наружу потоки энергии.

Стало совершенно ясно, что теперь ученым надлежит заняться именно ядрами. Атомы содержат изрядное количество электричества, и если половина его распределяется по орбитам этих самых электронов, другая втиснута в сверхплотное центральное ядро. Способа, который позволял бы удерживать столь большой заряд в столь малом объеме, никто не знал. И все же там, в ядре атома, присутствовало нечто, способное запихать в ядро весь этот заряд и удерживать его, не давая извернуться и выскочить наружу. Атом был складским хранилищем скрытой энергии, на существование которой указывало уравнение Эйнштейна. В нем находились положительно заряженные частицы, которые мы называем протонами, — однако выяснить какие-либо относящиеся к ним подробности не удавалось никому.

В конце концов, ассистент Резерфорда Джеймс Чедвик все же сумел получить картину более ясную, — это произошло в 1932 году, когда он открыл еще одну скрывавшуюся в ядре частицу. Ею был нейтрон, получивший такое название потому, что он, походя размерами на протон, был электрически совершенно нейтральным. На то, чтобы обнаружить его, у Чедвика ушло больше пятнадцати лет. В какой-то момент проводимых Чедвиком исследований его студенты даже поставили пьесу, в которой рассказывалась о поисках этой частицы, обладающей столь малым числом свойств, что они в шутку прозвали ее «малотроном». Однако на того, кто провел годы рядом с громогласным и нетерпеливым Резерфордом, студенческие шутки большого впечатления произвести не могли. Чедвик был человеком тихим, однако к цели своей шел решительно и неуклонно.

1 ... 18 19 20 21 22 23 24 25 26 ... 85
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?