litbaza книги онлайнРазная литератураЗанимательная теория вероятности - Александр Исаакович Китайгородский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 19 20 21 22 23 24 25 26 27 ... 62
Перейти на страницу:
видите, предсказание по принципу «сегодня как вчера» имеет обоснование в теории вероятности. Большинство прогнозов погоды носит именно такой характер, а чтобы судить о научной мощи предсказаний, надо было бы скидывать со счетов все прогнозы типа «погода остается без изменений». Кажется, так метеорологи и поступают, когда испытывают новые теории и схемы предсказания погоды. Предвидение потепления или похолодания — вот в чем должно проявиться понимание законов климата.

Но вернемся к работе Бейеса. Мы проиллюстрировали примерами лишь одну из формул его теории, касающихся вероятности повторения событий. Но оправданы также попытки предсказания будущего и тогда, когда ряд событий неоднороден и состоит из чередующихся удач и неудач. В этом случае формула Бейеса меняется лишь незначительно: в ее знаменателе будет стоять полное число событий плюс 2. Например, если проведенная на курорте неделя (7 дней) порадовала нас всего лишь одним хорошим днем, то вероятность дождя на восьмой день нашего отдыха будет вычисляться так: Р = (6 + 1)/(7 + 2) = 7/9.

Если в баскетбол играет сильная команда «Спартак» со слабой командой, скажем текстильного института, и если, придя с опозданием к началу состязания, мы узнаем, что счет 1: 10 в пользу института, то мы все же не поставим и гривенника против рубля за команду студентов. Для предсказания исхода состязания формула, о которой идет речь, явно без пользы. Она «работает» лишь в том случае, если нам ничего не известно о вероятностях выигрыша и проигрыша команд — участниц состязания. Вот если бы я не знал, кто играет, и не видел бы техники игры, тогда, зная счет 1: 10, я действительно имел бы право сделать заключение: вероятность того, что следующее очко заработает ведущая команда, равна 11/13.

Интересно применение работы Бейеса в случаях, когда наши заключения об исходе события делаются на основании комбинации априорного (доопытного) знания и знания результата опыта. Из полной колоды карт потеряли одну. Какую — неизвестно. Некто просто «с потолка» высказывает гипотезу, что потеряна пика. Ясно, что при отсутствии какого-либо дополнительного знания вероятность этой гипотезы равняется 1/4. Вероятность противоположного утверждения, что потеряна не пика, равна 3/4. Поскольку автор первой гипотезы настаивает на проверке своего утверждения, то ставит опыт. Из колоды берутся две карты, которые оказываются пиками. Нетрудно видеть, что сторонники второй гипотезы после этого опыта укрепляются в своем мнении, а шансы авторов первой упали.

Формулы Бейеса позволяют произвести и количественные оценки. Можно рассчитать, насколько изменились вероятности гипотез после того, как получена дополнительная информация. Мы не будем приводить формулы и производить вычисления, а подчеркнем лишь идейную сторону дела.

Довольно редко дело обстоит так, что после проведенного единичного эксперимента ошибочные гипотезы смело могут быть отброшены, а единственно правильная поставлена на пьедестал почета. Большей частью разовый опыт лишь изменяет вероятность достоверности высказанных гипотез. Если одна из них «взяла верх» над другими не слишком значительно, то потребуется и второй эксперимент, а может быть, и третий, и сотый. По мере накопления информации вероятность правильной гипотезы будет постепенно расти. Впрочем, рост может быть и не монотонным, а на каком-то разе так называемая правильная гипотеза может здорово проиграть и даже совсем рухнуть. Так в примере урны с шарами дело может обстоять следующим образом: вытянув десять черных шаров, мы уже почти уверимся в том, что в ней нет шаров иного цвета, ан нет — одиннадцатый раз вытащили белый, и вопрос вновь остается открытым. В конце концов истина восторжествует и наступит ясность, и тогда опытное исследование может быть прекращено и результат обнародован.

Имеется ряд проблем, в которых вероятности гипотез могут быть достаточно хорошо вычислены на каждом этапе исследования в зависимости от полученного объема информации. В подобных случаях планирование эксперимента может быть поручено ЭВМ. Машина будет оценивать вероятности всех гипотез после каждого шага и остановится тогда, когда вероятность одной из гипотез станет настолько значительной, что ее можно считать истиной.

Работы Томаса Бейеса лежат в основе современного подхода к эксперименту. Подход этот используется в генетических исследованиях, в теории военной стратегии, в исследовании движения ядерных частиц и во многих других областях деятельности людей.

Миллион цифр

В заголовке мы написали «миллион цифр», а точнее надо бы было сказать — миллион случайных цифр. Такая книжка, не содержащая ничего, кроме миллиона цифр, вышла в свет и нашла своих читателей. Возьмем ряд случайных цифр: 0, 1,9, 6, 7… Что, собственно говоря, означает, что они образуют случайную последовательность? И кого интересует такой ряд? Начнем с ответа на второй вопрос.

Представьте себе, что вы проводите обширный эксперимент по агротехнике. Поле разбито на 1000 небольших участков, каждый из которых должен быть ухожен определенным способом. Пускай способов таких (агротехнических систем) 10. Занумеруем их. Теперь нужно решить, на каком участке какую агротехническую систему применить. Для этого каждому участку припишем какую-либо цифру от 0 до 9, и притом сделаем так, чтобы приписка была совершенно случайной. Только при случайной нумерации наши выводы о целесообразности того или иного способа обработки почвы будут лишены сознательной или бессознательной ошибки, связанной с тем, что для какого-то «излюбленного» способа выбираются лучшие участки.

Поручить кому-либо называть цифры наобум нельзя, нельзя даже ребенку, который не заинтересован в пропаганде ваших или еще чьих-то агротехнических теорий, нельзя потому, что, оказывается, каждый человек питает симпатию к одним и нелюбовь к другим цифрам. Поэтому «наобум» не будет означать «случайно». Ряды же случайных цифр нужны самым разным экспериментаторам: медикам и социологам, администраторам и полководцам, экономистам и метеорологам и многим-многим другим.

Нужду в случайных цифрах испытывают также и математики, решающие свои задачи так называемым методом Монте-Карло, который становится все более распространенным по мере увеличения числа электронно-вычислительных машин. Чтобы дать хоть некоторое представление об этом методе, приведем несколько простых примеров.

Мы хотим вычислить площадь произвольной сложной фигуры, какую представляет, ну скажем, Московская область на карте. Площадь всей карты найти просто — надо помножить ее ширину на длину. А как быть с фигурой причудливой формы?

Представьте себе, что на карту падают капли дождя и случайным образом усеивают карту. Подсчитаем общее число капелек и число капелек, попавших па интересующую нас Московскую область. Ясно, что отношение этих чисел должно равняться отношению площади всей карты к площади Московской области.

Разумеется, подставлять карту под дождь не надо. Каждую каплю можно представить двумя случайными числами (двумя координатами на плоскости), и тогда «заполнение площадей каплями» можно произвести мысленно.

1 ... 19 20 21 22 23 24 25 26 27 ... 62
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?