litbaza книги онлайнРазная литератураЧеловек редактированный, или Биомедицина будущего - Сергей Львович Киселев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 21 22 23 24 25 26 27 28 29 ... 42
Перейти на страницу:
в момент, когда клетка начинает переходить к процессу деления — митоза. Именно своим перекрестьем они прикрепляются к определенным структурам во время метафазы (стадия митоза) и расходятся по разным клеткам. Они так и называются — метафазные хромосомы. В этот момент они сильно конденсированы, то есть генетический материал в них очень плотно упакован, ведь хромосомы содержат нить ДНК длиной несколько десятков сантиметров, генетическую информацию которой надо поделить между двумя дочерними клетками без потерь.

Сам процесс деления клетки продолжается недолго. Большую часть времени клетка пребывает в интерфазе — состоянии между делениями, когда занимается своей «профессиональной» деятельностью. Длительность интерфазы у клеток разной специализации сильно различается. Например, нейроны находятся в стадии интерфазы практически на протяжении всей жизни организма; можно считать, что они не делятся. А вот активированные лимфоциты будут делиться примерно один раз за промежуток времени от двух до двадцати четырех часов, в зависимости от степени их активации. Им же надо бороться с инфекцией! Именно после встречи с инфекцией они становятся активированными и начинают делиться. В любом случае клетка уделяет значительное время выполнению своих специальных функций, то есть определенная часть генетической информации должна быть постоянно доступна для считывания.

Как вы понимаете, с ДНК, плотно упакованной в крошечных «червячках» метафазных хромосом, сложно считывать информацию. Поэтому хромосомы деконденсируются — молекула ДНК раскручивается и заполняет собой все ядро. Если окрасить каждую хромосому в свой цвет, ядро в этот момент по раскраске будет напоминать трехмерный пазл или очень сложную головоломку — 3D-шар. Различные фрагменты одной хромосомы соседствуют с фрагментами другой, переплетаясь, а некоторые очень отдалены. И это не хаос а стабильно сохраняющееся состояние генетического материала в интерфазе — фазе «профессиональной» деятельности клетки.

На этом этапе клеточного цикла хромосомы занимают хромосомные территории в пространстве ядра. Расположение соседних территорий и определяет закрытость или открытость генетических файлов, то есть комбинаций тех генов, которые должны работать в специализированной клетке, ведь они раскиданы по разным хромосомам (и это правильно: «не клади все яйца в одну корзину»), но работать должны скоординированно. Для этого считывающие транскрипционные комплексы (помните наши ленточные магнитофоны XX века и современные стримеры?) собираются в определенных местах ядра, и необходимые гены располагаются там же, даже если они на разных хромосомах и работают под воздействием одного транскрипционного комплекса, так как находятся в одном определенном месте. Для понимания работы всего генетического аппарата обнаружение активных генов с разных хромосом, находящихся физически в одном месте, имеет огромное значение. Это уже не изучение одного-единственного гена в пробирке, а исследование синхронизированной работы генов в клетке.

Технологии секвенирования нового поколения и современные информационные технологии позволили предсказать такие возможные генетические комплексы. Но, увы, только теоретически. С определенной вероятностью, довольно высокой — девяносто пять, девяносто, восемьдесят пять, восемьдесят процентов, — можно сказать, что эти два, три, четыре, пять... генов действительно находятся рядом и используют одну и ту же транскрипционную машину. Но как это подтвердить на сто процентов? Вот если бы можно было увидеть своими глазами! Оказалось, что можно, и в решении этой проблемы ученым помогли... медузы.

МЕДУЗЫ И ГЕНЕТИКА

Как ни странно, в глубинах океана, куда вообще не проникает свет, тоже есть жизнь — богатая и разнообразная. Обитающие там организмы, никогда не видевшие света, обладают множеством диковинных свойств, предназначение которых зачастую бывает для нас непонятным. Одно из них обнаружили еще в 1960-х годах. Вытащенные на поверхность глубоководные организмы, потерявшие при солнечном освещении всю свою красоту, случайно были освещены ультрафиолетовым светом определенной длины волны. И вдруг полупрозрачные, почти бесцветные медузы и другие подводные жители «загорелись» зеленым, синим, красным, оранжевым цветами!

Оказывается, ультрафиолетовый свет этой длины волны, невидимый для наших глаз, приводит к возбуждению электронов в молекулах определенных белков, и клетки, содержащие эти белки, начинают светиться. Это качество, для глубоководных существ абсолютно ненужное и бессмысленное, так как вода прекрасно поглощает ультрафиолет, для нас оказалось чрезвычайно полезным. На данный момент открыто много различных флуоресцентных белков, одна часть которых выделена напрямую из тех или иных видов медуз, кораллов и других подводных жителей, а другая часть получена генно-инженерными способами. Сегодня флуоресцентные цветные белки активно применяются в научных исследованиях.

Именно флуоресцентные белки стали использоваться для создания так называемой репортерной системы на основе мутантной системы CRISPR/Cas9. Репортерная система — это, конечно, научный жаргон экспериментальных исследователей. Сегодня у нас слово «репортер» ассоциируется только со средствами массовой информации. В привычном понимании это кто-то, передающий информацию с места событий. Такое же значение это слово приобрело и в современной экспериментальной биологии. Биологическая репортерная система связана со светящимися белками, благодаря которым появляется возможность своими глазами видеть микроскопические события, происходящие внутри клетки. За использование свойств зеленого флуоресцентного белка — GFP (green fluorescent protein), выделенного из медуз, в 2008 году была вручена

Нобелевская премия. Надо отметить, что в справке Нобелевского комитета ни разу не прозвучало сочетание «репортерная система», зато неоднократно использовались такие слова, как «освещает» (illuminate) и «маяк», «бакен», «сигнальный огонь» (beacon). Действительно, если с помощью генной инженерии сделать синтетическую конструкцию, в которой какой-то клеточный белок, например инсулин, составляет единое целое с GFP, то введя ее в клетки или даже в целый организм, мы сможем визуально проследить, как инсулин секретируется клетками и путешествует по организму.

При создании репортерной системы на основе CRISPR/Cas9 используется следующий подход. Берется направляющая РНК, с помощью генной инженерии соединенная с мутантным белком Cas9, который лишен нуклеазной активности (способности разрезать ДНК), к нему «пришивается», как говорят генные инженеры, репортерный флуоресцентный белок. Посветив ультрафиолетом на клетку, в которую введена такая репортерная конструкция, мы увидим ее свет именно там, где направляющая РНК нашла определенный фрагмент ДНК, с которым она связалась. Теперь надо ввести в клетку генетические конструкции с направляющими РНК к тем генам, которые предположительно находятся все вместе в одном районе ядра (колокализуются), причем каждая из генетических конструкций содержит мутантный Cas9 своего цвета. И тогда мы получим возможность своими глазами увидеть в живой клетке, не разрушая ее, в каком именно месте находятся наши гены, использующие один и тот же транскрипционный комплекс. И это не просто игрушка ученых, а важный технологический шаг, потому что очень многие болезни характеризуются как раз нарушением работы генов, но далеко

1 ... 21 22 23 24 25 26 27 28 29 ... 42
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?