Шрифт:
Интервал:
Закладка:
Это, конечно, не означает, будто бы мы не доказали, что для разложения «корня из двух» период начинается сразу, и длина его равна единице, а сам период равен «2». В данном случае не просто повторяются числа 2222…, начиная со второго места, а повторяются условия для повторения этого числа. Ниже мы не будем углубляться в эту философскую проблему, а просто предположим, что уже «кем-то» доказано наличие именно периода такой длины, и именно из таких чисел.
Мы раскладывали для самого простого случая, и в нём сразу пошел период: целые части со второго места равны 2, 2, 2, и т. д. Если бы я обрубал цепную дробь в любом месте для любого m, я совершил бы ошибку. А на самом деле обрубать нужно ровно в конце периода, то есть в том месте, где начинается повторение. Начало периода — это как раз самое большое число. В этом месте и нужно обрубать, игнорируя весь последний отрезок дроби, начиная с самого большого числа. Например, в идущем ниже примере мы доходим до 4 и обрубаем. В следующий раз можем обрубить перед второй четверкой, и т. д.
Но это был модельный пример, не относящийся ни к какому m.
Например, бывает, что повторение начнется на 7 или 8 ступеньке дроби, или еще дальше. Число 61, среди первых 100 чисел, самое неприятное в нашем смысле. Ибо √61 очень долго раскладывается в цепную дробь, пока не повторятся условия, обеспечивающие циклическое повторение всех выделяемых далее целых частей. И поэтому самые маленькие решения уравнения x2 − 61у2 = ±1 будут больше миллиарда.
В костромской области каждые полгода проводится школа для сильных школьников. Вот они у нас где-то за часик этот корень из 61 раскладывали. Потом еще минут десять сворачивали дробь, и на выходе получали два числа порядка миллиарда. Которые, если подставить в наше уравнение, чудесным образом дают решение уравнения Пелля.
Цепная дробь (или алгоритм Евклида, который ее породил) может быть изложена геометрическим образом. Полезно знать, какая геометрия за этим стоит. Ниже я ее изображу.
Немного уточню теорему Лагранжа, что приблизит нас к термину алгебраические числа. Что такое рациональное число? Мы договорились, что это «целое делить на целое» (то есть m/n). Можно написать и по-другому. Рациональное число — это корень (то есть решение) уравнения m − nх = 0.
Например, 17/15 — корень уравнения 17 − 5x = 0. Подставьте х = 17/15 и проверьте это.
К чему мы приходим? К более широкому подходу. Рациональные числа — это корни вот таких линейных уравнений, то есть уравнений первой степени с целыми коэффициентами.
Корнем какого уравнения является число «корень из двух» (обозначим его просто К)? Нужно написать выражение с иксом, у которого целые коэффициенты, такое, что при подстановке получится 0. Вот оно: x2 − 2 = 0.
Оно 2-й степени. Вот я и говорю поэтому: К — число не рациональное. Ведь это уравнение нелинейное, оно второй степени.
А если я напишу: x10 − 3 = 0?
Что я получу на выходе? Корень 10-й степени из 3. Число не рациональное, удовлетворяющее уравнению, где слева стоит многочлен с целыми коэффициентами.
Напишем произвольное уравнение 2-й степени: ах2 + bх + с = 0 (тут, конечно, «а» не равно нулю).
Такое уравнение вы, без сомнения, изучали в школе. Но вы изучали его для произвольных а, b, с. А мы будем рассматривать только целые. То есть многочлен, в котором целое число раз взята единица (либо минус единица) — получилось «с», потом целое число раз взят х (с тем или иным знаком) — это будет «b», и целое число раз взят x2 (это — «а»). Решаем квадратное уравнение по известной формуле:
Мы получили выражение, использующее при своем построении операцию извлечения квадратного корня один раз. Так вот, теорема Лагранжа звучит так: если х является решением уравнения
ах2 + bх + с = 0
с целыми коэффициентами, то тогда его цепная дробь будет либо конечной (если вдруг решение окажется рациональным), либо периодической. Верно также обратное утверждение. Если цепная дробь устроена так, что у нее, начиная с некоторого места, возникает периодическое повторение целых частей, то она удовлетворяет такому уравнению с целыми коэффициентами.
А вот теперь, опираясь на эту теорему, я могу вам дать основное определение. Число называется алгебраическим, если оно является корнем хотя бы одного уравнения с целыми коэффициентами произвольной длины. Не обязательно квадратного, как у нас, а произвольного (многочлен любой степени).
А трансцендентное число — это число, которое не является алгебраическим. С этим связана долгая история. Стоял вопрос, существуют ли трансцендентные числа вообще. Древним грекам было известно, что длина диагонали квадрата не является рациональным числом. Это было очень неудобно древним. Но, с другой стороны, она удовлетворяет элементарному квадратному уравнению, то есть является алгебраическим числом. Возникает вопрос: все ли числа алгебраические? Ответ — нет. Математик Ж. Лиувилль, живший в середине XIX века, просто выписал конкретное число и доказал, что оно не является алгебраическим. С этого всё и началось. На самом деле алгебраических чисел неизмеримо меньше, чем не алгебраических, то есть трансцендентных.
Грубо говоря, если вы возьмете вещественную ось и случайно воткнете в нее булавочку нулевой толщины, вы практически наверняка попадете в неалгебраическое число.
Мы с вами на 3 лекции какую-то задачу решали с какой-то железкой (помните? — которую надо куда-то отправить, чтобы она встала в вертикальное положение). Если вы эту железку наугад взяли где-то, со свалки, установили на шарнир и