Шрифт:
Интервал:
Закладка:
И действительно, в больших городах эта проблема в прямом смысле хватает людей за горло. В часы пик там просто нечем дышать. А наиболее предприимчивые дельцы того и гляди начнут, а кое-где уже начали торговать «на вынос и распивочно» пинтами и галлонами чистого воздуха.
Почему возник дефицит кислорода? Его естественный баланс, существующий и поддерживаемый в природе, в нашу промышленную эпоху дополнился новой и мощной статьей расхода свободного кислорода, идущего на многочисленные окислительные процессы, связанные с производственной деятельностью человека. Особенно много кислорода расходуется на сжигание угля, нефти и газа, и столь интенсивный расход, к сожалению, не компенсируется никакими другими процессами его получения.
Таким образом, хотя использование спирта в качестве горючего и основано на применении легко возобновляемых источников энергии, оно связано с серьезной экологической проблемой нехватки кислорода. Возможным ее решением является строительство атомных электростанций, которые не нуждаются ни в использовании традиционных энергоресурсов, ни в большом количестве кислорода. Однако получение атомной энергии связано с использованием урана, тория и других радиоактивных элементов, запасы которых, к сожалению, имеют предел, и, следовательно, такой способ может лишь отдалить наступление энергетического кризиса.
Неслучайно Ф. Жолио-Кюри, крупнейший французский ученый, посвятивший свою жизнь проблемам ядерной энергии, сам уповал на совершенно другой путь решения энергетической проблемы.
Следует заметить, что несмотря на освоение человеком различных источников энергии все они имеют общее «солнечное» происхождение. Так, каменный уголь представляет собой окаменевшие растительные остатки, т. е. ассимилированную когда-то солнечную энергию. На ней, по сути, работают мощные гидроэлектростанции. Энергия, которую мы ежедневно получаем с пищей, аналогичного происхождения. Словом, Солнце — праматерь всех известных видов энергии и, что самое интересное, само по себе является постоянно возобновляемым ее источником.
Солнечная энергия, приходящаяся на единицу освещаемой поверхности, в среднем по земному шару составляет 5,4 кВт × ч/м2 ежедневно. Это означает, что с поверхности площадью всего в 80 квадратных километров можно было бы получить столько же энергии, сколько человечество получает, используя все свои установки для ее производства. Возникает недоуменный вопрос: откуда же дефицит энергии при таком обилии? Буквально купаясь в океане энергии и постоянно испытывая все возрастающую нужду в ней, человечество напоминает мифического Тантала, стоящего по грудь в воде и несмотря на это обреченного на неутолимую жажду.
Действительно, океан солнечной энергии, омывающий Землю, огромен. Но это рассеянная энергия, и при попытках сконцентрировать ее она как бы уходит сквозь пальцы, если под ними подразумевать улавливающие и преобразующие устройства. Переход солнечной энергии в тепловую с последующим ее преобразованием в механическую и, наконец, механической в электрическую связан с большими потерями на каждой стадии, что обуславливает низкий КПД энергоустановок. Кстати, это чревато и серьезными экологическими проблемами. Ведь энергия, выделяющаяся в виде тепла в процессе перехода из одного ее вида в другой, способствует тепловому заражению атмосферы, что в конце концов может привести к перегреву всей системы Земли и вызвать множество предсказуемых и непредсказуемых негативных последствий.
Каким же образом миновать все эти многочисленные переходы и получить электрическую энергию непосредственно из солнечной? Примером такого устройства является фотоэлемент.
Что он собой представляет? Это тонкая пластинка, к которой припаяны электрические контакты, и когда она освещена, на них появляется разность потенциалов. Если соединить достаточное количество таких пластинок, то можно привести в действие любой электрический прибор. Батарея фотоэлементов с достаточно большой мощностью могла бы обеспечить, как мы уже писали выше, все энергетические потребности человечества. Вот вам и решение проблемы.
Однако до этого еще далеко. Прежде всего, стоимость фотоэлементов пока еще очень велика, поэтому по сравнению с традиционными способами один киловатт электроэнергии, полученный с их помощью, обходится значительно дороже.
Вот почему пока еще мы вынуждены улавливать рассеянную солнечную энергию зелеными листьями растений, выращивая их на огромных площадях. Этот процесс усвоения энергии, протекающий с участием специфического вещества хлорофилла, называется фотосинтезом. Его суть упрощенно заключается в образовании углеводов и может быть выражена следующим уравнением:
CO2 + H2O = CH2O + O2
С помощью изотопного анализа было показано, что в процессе фотосинтеза происходит расщепление молекулы воды на водород и гидроксил. Однако известно, что этот процесс требует значительных затрат энергии. Откуда же она берется? Поглощая кванты солнечного света, молекула хлорофилла переходит в возбужденное состояние и затем «отдает» электрон. В результате образуется активированный водород, который, соединяясь с молекулой углекислого газа, образует молекулу углевода.
Таким образом, упрощенно можно представить процесс фотосинтеза как перенос водорода от молекулы воды к молекуле углекислого газа с образованием углеводов. В определенных условиях и при участии специального фермента — гидрогеназы — из активированного водорода может быть получен молекулярный водород, а не углеводы. Накопленный таким образом водород можно использовать как топливо (по энергоемкости этот химический элемент в пересчете на единицу веса превосходит нефть в 3,3 раза). Если бы такой процесс удалось осуществить с помощью солнечной энергии, то мы бы приобрели практически неограниченные запасы универсального топлива.
По существу, «водородный» путь использования солнечной энергии может быть представлен двумя реакциями:
1) 2H2O солнечная энергия, хлорофилл→ 2H2 + О2;
2) 2H2 + O2 → 2H2O + энергия.
В первой реакции солнечная энергия используется для получения водорода, а во второй энергия, выделяющаяся при его сгорании, может быть реализована в виде топлива с последующим превращением в другие виды энергии. Из приведенных уравнений видно, что такой путь ее получения не нуждается в дополнительном кислороде, так как этот химический элемент, необходимый для сжигания водорода, образуется как побочный продукт получения водорода. Кроме того, водородная энергетика обладает огромным преимуществом с точки зрения экологии, поскольку единственным продуктом сгорания водорода является… вода! Именно полученную в результате такого процесса воду пили американские космонавты во время полета на Луну.
«Но при чем здесь микроорганизмы?» — спросите вы. Дело в том, что в клеточных мембранах бактерий обнаружен пурпурный пигмент, способный так же, как и хлорофилл, улавливать солнечную энергию.
Этот пигмент — бактериохлорофилл — удивительное вещество сродни хлорофиллу. Об этом говорит и его название. Поскольку он является частью микробной биомассы, бактериохлорофилл легко накопить в довольно больших количествах. Процесс его выделения не представляет больших трудностей. Однако даже выделенный в «мягких», как принято говорить, условиях, нативный бактериохлорофилл может осуществлять интересующий нас процесс непродолжительное время. Оторванный от своей «матери-бактерии», он, подобно мифическому Антею в железных объятиях Геракла, довольно быстро теряет силы под действием различных повреждающих факторов. Следовательно, необходимо не только получить и выделить этот важный продукт бактериального биосинтеза, но и как-то стабилизировать, задержать его разложение. Надо сказать, что опыт такого рода работ в микробиологии уже имеется. Есть даже такое понятие, как иммобилизация. И приложимо оно ко многим сторонам микробиологической технологии. Так, есть иммобилизованные ферменты, иммобилизованные субклеточные частицы и даже иммобилизованные микробные клетки.