Шрифт:
Интервал:
Закладка:
Однако ни тот, ни другой подход не помог по-настоящему пролить свет на загадку сохранения воспоминаний. Метод Канделя оказался непригоден для мозга, более похожего на наш с вами: в таком мозгу воспоминания, судя по всему, не локализованы в отдельных синапсах. Подход же Гринафа также грешит неполнотой, ибо подсчет синапсов еще не говорит о том, каким образом они организованы в узор. Более того, если даже увеличение числа синапсов (скажем, при утолщении коры) коррелирует с процессом обучения, не очень ясно, случайна такая связь или нет.
Чтобы по-настоящему раскусить загадку памяти, нам нужно выяснить, задействованы ли в ней процессы изменения синаптического веса и рекомбинации связей, и если да, то как именно. Я уже говорил о теории, согласно которой рисунки связей, влияющие на память, представляют собой клеточные ансамбли и синаптические цепочки. Сделаем еще один шаг и предположим, что эти узоры возникают благодаря ИСВ и рекомбинации. Рассмотрим те вопросы, которые в результате появляются. Независимы ли эти два процесса – или они идут совместно? Почему мозг использует оба, а не один? Можно ли объяснить какие-то ограничения, свойственные памяти, как неполадки в ходе накопления информации, происходящего благодаря этим процессам?
Помимо удовлетворения нашего любопытства касательно памяти, исследование ИСВ и рекомбинации связей может иметь и практическое значение. Допустим, ваша задача – создать лекарство, улучшающее способность накапливать воспоминания. Если вы верите в неофренологию, то вы, может быть, попытаетесь разработать препарат, который позитивно действует на процессы, играющие роль в выращивании новых синапсов. Но если неофренологи ошибаются (скорее всего, так оно и есть), подобное выращивание новых синапсов может оказать на мозг совсем не то действие, что вы планировали. И вообще, хотим ли мы усовершенствовать свою память или предотвратить ее неполадки, нам необходимо прежде узнать кое-что об основополагающих механизмах ее действия.
* * *
Мы уже видели, каким образом клеточный ансамбль может сохранять в себе ассоциации между идеями как связи между нейронами. Но как мозг вообще создает клеточный ансамбль? Это коннекционистский вариант вопроса, которым с давних пор задавались философы: откуда берутся идеи и их ассоциации? Возможно, некоторые из них – врожденные. Но очевидно, что все остальные должны появляться в результате обучения и накопления нового опыта.
За много веков философы вывели целый ряд принципов, согласно которым в процессе обучения и накопления нового опыта появляются новые ассоциации. На первой строчке этого списка – совпадение, иногда его еще называют смежностью во времени или пространстве. Если вы увидите снимки поп-певицы с ее дружком-бейсболистом, вы поймете, что между ними существует ассоциация. Второй фактор – повторение. Единичного лицезрения этих знаменитостей, сфотографированных вместе, может оказаться недостаточно для того, чтобы в вашем сознании возникла ассоциация, но если вы с тошнотворной частотой каждый день натыкаетесь на их совместные изображения в каждом журнале и газете, вы неизбежно впитаете в себя эту новую ассоциацию. Для некоторых типов ассоциаций играет важную роль и хронология, расположение объектов во времени. В детстве вы много раз повторяли алфавитную последовательность букв, пока не выучивали ее наизусть. Вы заучивали ассоциацию каждой буквы со следующей, поскольку буквы всегда шли друг за другом в определенном порядке. Ассоциация же между поп-исполнительницей и ее приятелем в описанном случае – двусторонняя, поскольку они всегда появляются перед вашими глазами одновременно.
Поэтому философы предположили, что нам удается впитать ту или иную ассоциацию идей, когда одна неоднократно сопутствует другой или следует за ней. Коннекционисты заключают:
Если два нейрона неоднократно активируются одновременно, связи между ними усиливаются в обоих направлениях.
Это правило пластичности применимо для впитывания двух идей, неоднократно появляющихся совместно – скажем, как в случае с поп-певичкой и ее другом. Для обучения ассоциациям между идеями, появляющимися перед вами одна за другой, коннекционисты предложили сходное правило:
Если два нейрона неоднократно активируются последовательно, усиливается связь, направленная от одного ко второму.
Кстати, в обоих правилах предполагается, что связи усиливаются навсегда или, по крайней мере, надолго: так ассоциация закрепляется в памяти.
Правило, описывающее последовательную активацию нейронов, предложил Дональд Хебб. Кроме того, в своей книге «Организация поведения» (1949) он ввел термин «клеточный ансамбль». Оба варианта правила (и «одновременный», и «последовательный») позже стали называть правилами синаптической пластичности Хебба. При этом оговаривается, что в обоих правилах есть «зависимость от активности»: пластичность повышается благодаря изменению активности нейронов, вовлеченных в создание соответствующего синапса. (Есть и другие способы повышения синаптической пластичности, не включающие в себя изменение нейронной активности: например, введение некоторых препаратов.) Обычно хеббовская пластичность описывает лишь синапсы между возбуждающими нейронами.
Хебб намного опередил свое время. Тогда у нейробиологов не существовало методов для выявления синаптической пластичности. Измерения параметров образования импульсов многие десятилетия проводились путем введения металлических проводов в нервную систему. Поскольку конец провода оставался за пределами нейрона, этот метод назвали «внеклеточной» записью параметров. По каждому проводу шли сигналы, соответствующие импульсам от нескольких нейронов, – словно разговоры в переполненном баре, накладывающиеся друг на друга. Этот метод применяется и поныне. Именно его использовали Ицхак Фрид и его коллеги, чтобы обнаружить «нейрон Дженнифер Энистон». Осторожно маневрируя кончиком провода, можно выделить сигнал единичного нейрона – подобно тому, как вы приближаете ухо ко рту вашего друга в шумном баре, чтобы лучше слышать его на фоне остальных голосов.
Внеклеточная запись оказалась достаточно подходящим методом для обнаружения нервных импульсов, однако она не позволяла измерить слабые электрические сигналы отдельных синапсов. Эту задачу впервые успешно решили в 1950-е годы, вставив в отдельный нейрон стеклянный электрод с чрезвычайно острым наконечником. Подобная «внутриклеточная» запись настолько точна, что с ее помощью можно детектировать гораздо более слабые сигналы – ну как если бы вы засунули ухо внутрь рта вашего барного собеседника. Кроме того, внутриклеточный электрод можно применять для того, чтобы с помощью электрического тока стимулировать нейрон к испусканию импульсов.
Чтобы измерить силу синапса, который осуществляет связь, направленную от нейрона А к нейрону Б, мы вставляем электроды в оба нейрона. Затем стимулируем образование импульса в нейроне А, в результате чего синапс выделяет нейротрансмиттер. После этого мы измеряем электрическое напряжение в нейроне Б, который отвечает на этот стимул всплеском сигнала, фиксируемым приборами. Величина этого всплеска как раз и характеризует силу синапса.
Можно измерять не только силу синапса, но и изменения этой силы. Чтобы создать эффект хеббовской пластичности, мы стимулируем образование импульса у пары нейронов. Как выяснилось, повторная стимуляция (последовательная или одновременная) усиливает синапсы – в полном согласии с двумя вариантами правила Хебба, изложенными ранее.