Шрифт:
Интервал:
Закладка:
Рис. 6.5. Швейцария
Рис. 6.6. Раскраска Швейцарии
Каждая из одиннадцати провинций граничит ровно с четырьмя другими, при этом в ее «окружении» обязательно имеется озеро. Наш метод говорит, что карту Королевства можно правильно раскрасить в три цвета; однако он ошибается, поскольку при наличии лишь трех цветов какие-нибудь две провинции непременно окажутся одинаково окрашены.
Рис. 6.7. Карта Королевства заклятых друзей
Международная конференция The International Conference on Theory and Applications of Satisfiability Testing стремится охватить все аспекты проблемы выполнимости. Особое внимание уделяется хорошим эвристическим алгоритмам. В рамках конференции проводится конкурс SAT Race, в котором участвуют компьютерные программы по решению SAT-задач. Задачи для конкурса могут быть сгенерированы случайным образом, позаимствованы из различных областей науки и техники или же сконструированы специально с таким расчетом, чтобы решить их было крайне трудно. Многие программы-участники успешно справляются с задачами на миллион переменных.
Эвристические алгоритмы не всегда способны выдать правильный ответ, и на конкурсе SAT Race их оценки далеки от высшего балла. Тем не менее они нередко умудряются решать задачи гигантских размеров – благодаря различным хитростям и невероятно высокой производительности современных компьютеров.
Предположим, мы ищем клику из трех человек среди всех 20000 жителей Королевства. По самым грубым подсчетам нужно проверить чуть больше триллиона вариантов – сущая ерунда для любого современного компьютера. Однако дальше варианты начинают размножаться с космической скоростью, перед которой компьютеры очень быстро пасуют: для клики размера четыре требуется уже 6 квадриллионов проверок, для клики размера пять – 26 квинтиллионов, а для клики размера шесть – 88 секстиллионов (т. е. 88 и 21 ноль).
Впрочем, поиск «иголки в стоге сена» не всегда превращается в такую катастрофу. Группа жителей Королевства считается очень приятной, если для любой пары друзей хотя бы один из них в эту группу входит.
Рис. 6.8. Дружеские связи
На представленной выше диаграмме Боб, Даниэль, Фрэнк и Гарри образуют очень приятную группу, поскольку все дружеские связи (линии на схеме) завязаны на них.
Рис. 6.9. Очень приятная группа размера четыре
А вот очень приятную группу размера три составить уже не получится. Например, если взять Элис, Чарли и Фрэнка – потеряются дружеские связи Ева – Даниэль и Джордж – Гарри.
Задача поиска очень приятной группы, более известная под официальным названием «задача о вершинном покрытии», принадлежит к «старой гвардии» и упоминается еще в списке NP-полных задач Карпа.
Давайте взглянем на дружеские связи Фрэнка. Если Фрэнк не является членом очень приятной группы, то тогда в нее должны входить Джордж, Даниэль и Ева, поскольку все они с Фрэнком друзья. Каждая очень приятная группа обязательно содержит либо Фрэнка, либо всех его друзей – даже если их не три, а целых сто.
При помощи подобных хитростей можно избежать полного перебора всех потенциальных вариантов при поиске небольших очень приятных групп. Для группы размера пять понадобится около 100000 проверок, для группы размера 10–200000 проверок, а для группы размера 30–601000 проверок; любой ноутбук справится с такой задачей за считаные доли секунды. Поиск очень приятной группы размера 113 потребует проверки триллиона вариантов и будет длиться не дольше, чем поиск клики из каких-то несчастных трех человек.
Рис. 6.10. Не очень приятная группа размера 3
Стоп. Выходит, очень приятные группы искать не так уж сложно? Но разве Карп не доказал, что поиск очень приятной группы минимального размера (т. е. минимального вершинного покрытия) – задача NP-полная? Дело в том, что у жителей Королевства друзей обычно очень много. Маловероятно, что все дружеские связи завязаны лишь на 113 жителях. А как только мы замахнемся на группы побольше, число вариантов тут же резко возрастет.
Например, для группы размера 150 потребуется уже 1,5 квадриллиона проверок, для группы размера 200 – более секстиллиона, а для группы размера 500 – примерно 38 сексдециллионов (т. е. 38 и 51 ноль). Поиск очень приятной группы минимального размера – задача практически неразрешимая. А вот если нам просто нужно убедиться, что в Королевстве не существует очень приятной группы размера сто, мы получим ответ за разумное время.
Оптимальное решение получается найти далеко не всегда. Очень часто, однако, не самое лучшее решение оказывается вполне удовлетворительным.
Давайте снова обратимся к NP-полной задаче коммивояжера, в которой требуется проложить кратчайший маршрут через заданные города.
Предположим, вы хотите объехать 50 городов. Вам известно, что длина кратчайшего маршрута – 2800000 км. Если вы составите маршрут в 2810000 км, то вряд ли станете надрываться дальше из-за каких-то лишних 10000 км.
С другой стороны, если дорога обходится вам в доллар за километр, и за весь вояж вам заплатят 2805000 долларов, разница будет очень заметна: вы либо заработаете 5000 долларов (уложившись в 2800000 км), либо потеряете (удовлетворившись маршрутом в 2810000 км). Сократите длину пути до 2803000 км – и окажетесь в плюсе, хотя ваш маршрут не будет оптимальным.
Задача коммивояжера NP-полна, поэтому поиск точного решения предположительно затянется на неопределенное время. Зато мы можем построить приближенный маршрут, причем от оптимального он будет отличаться не так уж и сильно. Санджив Арора и Джо Митчелл независимо друг от друга разработали алгоритм, который разбивает карту на более мелкие куски и решает для каждого из них аналогичную задачу, а затем аккуратно склеивает все обратно.