litbaza книги онлайнДомашняяВселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Дэйв Голдберг

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 25 26 27 28 29 30 31 32 33 ... 79
Перейти на страницу:

Придется нам изобрести (ладно, хорошо, гипотетически выдвинуть) еще одну силу. Задействовав все имеющиеся в нашем распоряжении творческие способности, мы титаническим усилием выдумываем слабое взаимодействие. Слабое взаимодействие характерно в основном для нейтрино, поскольку, раз они нейтральны, они уж точно не умеют играть в электромагнетизм, а в сильное взаимодействие играют только кварки. Как выяснилось, нейтрино и электроны очень похожи, за исключением небольших различий в заряде, и слабое взаимодействие, среди прочего, позволяет нейтрино превращаться в электроны и наоборот. Каждую секунду сквозь вас проходят триллионы нейтрино. Солнце производит их квадрильонами, и все же гигантские детекторы засекают лишь несколько нейтрино в день. Редкость – верный признак того, что слабое взаимодействие не зря получило такое название. А поскольку нейтрино взаимодействуют только посредством слабого взаимодействия, нам и не удается наблюдать их часто.

Вселенная! Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности

Слабое взаимодействие очень похоже на бросание тяжелого гимнастического мяча. Летит он очень недалеко, бьет несильно и за типичное время успевает неимоверно надоесть. Вообще-то нам уже намекнули, почему это так скучно. Гимнастический мяч очень тяжелый, и даже атлеты-силачи легендарных времен не могли бросить его достаточно далеко.

В слабое взаимодействие играют кварки, нейтрино и электроны. Поскольку, как мы уже сказали, их очень много и все лезут поучаствовать, игра идет очень медленно, и ничего особенно интересного не происходит.

IV. Откуда же берутся эти силы?

Наш разговор мы начали с того, что фундаментальные силы похожи на игры, однако в нашей игре не хватает одного компонента, без которого ничего не получится: это мяч. Задумайтесь об этом. Без мяча теннис – не более чем конвульсивное размахивание ракеткой. То же самое можно сказать и о физике частиц. По состоянию наших знаний на сегодня, если положить два электрона на стол, они так и будут лежать. Взаимодействуют они только через электромагнитное (или слабое, или гравитационное) поле. Так что без поля они друг друга не увидят.

Откуда же берется поле? Две частицы должны как-то известить друг друга о своем присутствии. Это можно сделать, «послав» от одной к другой третью частицу. Этот посланец – или переносчик взаимодействия – и есть частица, которая на самом деле несет в себе силу. Два электрона посылают туда-сюда некую частицу с сообщением: «Вот он я, вали отсюда!»[70]

Частица-переносчик в электромагнетизме называется фотоном, и мы уже уделили беседе о нем довольно много времени в главе 2. Мы уже знаем, что фотоны лишены массы и двигаются со скоростью света. Вследствие наводняющей Вселенную энергии вакуума все мы по уши в фотонах, которые то появляются, то исчезают.

Как мы видели, в зависимости от обстоятельств свет можно считать частицей или волной. В более общем смысле волна – это такое поле, что-то такое, что наблюдается везде во времени и пространстве. Если вы возьмете антенну и обойдете с ней весь дом, то везде засечете радиосигналы: где-то слабее, где-то сильнее. Это и есть электромагнитное поле. Фотон – это всего лишь кусочек электромагнитного поля, который летит через пространство со скоростью света. То же самое можно сказать обо всех фундаментальных силах. Существует сильное поле, слабое поле, гравитационное поле, и у каждого есть своя соответствующая частица.

Переносчики сильного ядерного взаимодействия называются глюонами. Глюоны, как и фотоны, лишены массы и двигаются со скоростью света, однако, в отличие от фотонов, подвержены тревожным состояниям, связанным с сепарацией. Фотон – носитель электромагнитной силы, но сам по себе он электрически нейтрален. То есть сам он и не чувствует электромагнитной силы.

Частицы, которые испытывают на себе сильное взаимодействие, обладают зарядом иного рода – «цветом». «Сильные» аналоги отрицательного и положительного зарядов в мире электромагнетизма – это красный, синий и зеленый заряды, которые определяют взаимодействия, возникающие между кварками в сильном поле. Если вы собрались бежать за цветными карандашами, чтобы рисовать сильные взаимодействия, повремените. Это просто очередные придурковатые жаргонные названия, которые физики придумали, чтобы сбить с толку непосвященных.

Однако между электромагнитным режимом и сильным режимом существует важное различие. Как и при электромагнетизме, «игроки» (кварки) обладают зарядом, однако, в отличие от электромагнетизма, мячик тоже заряжен. Глюоны не просто переносят сильное взаимодействие, они его чувствуют – что разительным образом отличает их от фотонов. Глюоны притягивают друг друга и запутываются в структуры, которые называются глюболами. Это значит, что глюоны не могут летать далеко и сразу попадаются в ловушку – это одна из главных причин, по которой сильное взаимодействие ограничено пределами ядра. Это вдвойне справедливо для кварков, которые дадут сто очков вперед отшельникам вроде Дж.-Д. Сэлинджера и Томаса Пинчона. Вне ядра они вообще не встречаются.

Наша теория гравитации, которая называется общей теорией относительности, вообще не требует частиц-переносчиков. Об общей теории относительности мы поговорим в главах 6 и 7, но тот факт, что гравитация, согласно теории относительности, настолько отличается от всего остального, – это тайна, разгадку которой мы, вероятно, узнаем, когда будет разработана «Теория Всего» (по крайней мере убедительная Теория Всего).

Если все силы «на самом деле» одинаковы, тогда у всех должна быть частица-переносчик, не так ли? Идея заключается в том, что гравитацию переносит частица под названием гравитон, но ее не просто еще не открыли – мы крайне далеки от технологической возможности провести эксперимент, чувствительности которого хватило бы для обнаружения этой частицы. Однако мы уже знаем, что если гравитоны существуют, то они, как и фотоны, должны быть лишены массы. Вот почему они способны передавать гравитационные сигналы на такие громадные расстояния.

Слабое взаимодействие отличается от других очень сильно и доказывает это, как только может. Самое интересное его отличие заключается в том, что слабое взаимодействие переносят три частицы-переносчика. В отличие от пижонских названий, которые получили другие частицы, эти называются просто – W-бозоны и Z-бозоны[71]. Почему же слабое взаимодействие настолько слабо, почему для того, чтобы хоть как-то проявиться, ему нужны дистанции субатомных размеров? Ответ мы уже знаем. Бозоны массивны, как гимнастические мячи, и им очень трудно перемещаться на дальние дистанции. Вероятно, вы не видите в этом ничего необычного, однако даже по самым простым теориям слабое взаимодействие, как и электромагнетизм и все прочие силы, должно иметь частицу-переносчик, лишенную массы. Почему же эти частицы совсем другие?

1 ... 25 26 27 28 29 30 31 32 33 ... 79
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?