Шрифт:
Интервал:
Закладка:
Попробуем другие процентные ставки налога с продаж.
Как посчитать 7,25 % от 124 долларов? Вначале вычислите 7 % от 124. С помощью методов, показанных в главе 2, вы найдете, что 124 х 7 = 868. Значит, 7 % от 124 будет 8,68 доллара. Чтобы прибавить четверть процента, можно разделить исходную сумму в долларах на 4 (или сократить ее наполовину дважды) и перевести доллары в центы. Здесь 124 ÷ 4 = 31, поэтому прибавьте 31 цент к 8,68 доллара и получите точный размер налога — 8,99 доллара.
Еще один способ прийти к 31 центу: возьмите налог с продаж 7 % (8,68 доллара) и разделите его на 28. Причина, по которой это работает, заключается в том, что 7/28 = 1/4. Для быстрой устной оценки я бы, вероятно, разделил 8,68 доллара на 30, чтобы получить около 29 центов. Тогда приблизительный налог с продаж будет равен 8,97 доллара.
Деля на 30, в действительности вы вычисляете налог в размере 7 и 7/30 %, что приблизительно составляет 7,23 % вместо 7,25 %.
Как бы вы посчитали налог с продаж в размере 7,75 %? Вероятно, для большинства приближений достаточно сказать, что это немного меньше 8 %. Здесь вы найдете несколько предложений для получения лучших приближений. Как вы убедились в прошлом примере, если вы с легкостью можете вычислить корректировку в 0,25 %, то, просто утроив это число, можно получить корректировку в 0,75 %. Например, чтобы найти 7,75 % от 124 долларов, вы сначала рассчитываете 7 %, что составит 8,68 доллара. Если вы вычислите, что 0,25 % = 31 цент, то 0,75 % будет равно 93 центам; для получения общего итога сложим 8,68 + 0,93 = 9,61 доллара. Для быстрой оценки можно использовать тот факт, что 7/9 = 0,777 приблизительно равно 0,75. Поэтому можно разделить 7 % налога на 9, чтобы получить оценку, несколько превышающую 0,75 %. В данном примере, если при делении 8,68 доллара на 9 получим около 96 центов, то просто складываем 8,68 + 0,96 = 9,64 доллара, что почти совпадает с точным значением, хоть и с незначительным превышением.
Такую процедуру приближения можно использовать для любых налогов с продаж. Вот общая формула: чтобы оценить налог с продаж в размере A,B% долларов, сначала умножьте цену на A%. Затем разделите эту величину на число D, где A/D равняется 0,B. (Таким образом, D = А/В.) Сумма этих чисел составит общий размер налога. (Или его оценку, если вы округлили D до некоторого числа для упрощения вычислений.)
Например, с налогом 7,75 % магический делитель D равен 7 х 4/3 = 28/3 = 9 1/3, что мы округлим до 9 в меньшую сторону.
Для налога с продаж в размере 6 и 3/8 % сначала посчитайте налог в размере 6 %, затем разделите полученное число на 16, так как 6/16 = 3/8. (Чтобы разделить число на 16, разделите его дважды на 4, или сначала на 8, а затем на 2.) Попробуйте придумать метод для расчета налога с продаж в вашем регионе. Вы поймете, что эта задача не столь сложна, как кажется!
НЕСКОЛЬКО ИНТЕРЕСНЫХ ВЫЧИСЛЕНИЙ
В этом разделе мы вкратце рассмотрим несколько практических задач, связанных с процентами, временем увеличения суммы ваших сбережений и сроками погашения кредита.
Начнем со знаменитого Правила 70, которое гласит: чтобы найти число лет, необходимых для удвоения ваших денег, разделите число 70 на годовую процентную ставку. Предположим, вам предложили инвестиционную возможность, которая сулит выплаты в размере 5 % годовых. Так как 70 ÷ 5 = 14, потребуется около 14 лет, чтобы ваши деньги удвоились. Например, если вы разместили 1000 долларов на депозите под такую процентную ставку, то после 14 лет на нем будет 1000 х (1,05)14 = 1979,93 доллара. С процентной ставкой 7 %, согласно правилу 70, вам понадобится около 10 лет для удвоения денег. В самом деле, если вы вложите 1000 долларов по этой годовой процентной ставке, то через 10 лет получите 1000 х (1,07)10 = 1967,15 доллара. Что касается ставки в 2 %, то для удвоения сбережений в данном случае понадобится около 35 лет!
1000 х (1,02)35 = 1999,88
Еще одно похожее правило называется Правило 110; оно определяет, как долго ваши деньги будут утраиваться. Например, при ставке в 5 %, так как 110 ÷ 5 = 22, потребуется около 22 лет для того, чтобы 1000 долларов превратилась в 3000 долларов. Это подтверждается вычислением 1000 х (1,05)22 = 2 925,26 доллара. Правило 70 и Правило 110 основаны на свойствах числа e = 2,71828… и «натуральных логарифмах», но, к счастью, нам нет нужды использовать высшую математику, чтобы применять их.
Предположим, вы заняли деньги и рано или поздно должны их вернуть. Например, вы взяли кредит 360 000 долларов с годовой ставкой 6 % (то есть 0,5 % ставки каждый месяц) на 30 лет. Сколько примерно придется выплачивать ежемесячно? Прежде всего, каждый месяц вам понадобится 1800 долларов (360 000 долларов умножить на 0,5 % = 1800 долларов)
только для того, чтобы покрыть проценты. (Хотя на самом деле ваши долги по процентам будут распределяться равномерно.) Так как вы совершите 30 х 12 = 360 месячных выплат, то выплата дополнительной тысячи долларов каждый месяц покроет остаток вашего займа. Итак, верхняя граница ежемесячных выплат будет равна 1800 долларов + 1000 долларов = 2800 долларов. К счастью, вам не придется платить столько сверху. Вот мое правило большого пальца для оценки месячных платежей.
Обозначим буквой i вашу месячную процентную ставку.
(Годовая ставка, деленная на 12.) Тогда для выплаты кредита в размере P долларов за N месяцев месячная выплата М будет приблизительно равна:
В нашем последнем примере P = 360 000 долларов и i = 0,005. Формула показывает, что месячная выплата должна составлять:
Обратите внимание, что первые два числа в числителе при умножении дают 1800 долларов. С помощью калькулятора (для разнообразия) подсчитаем (1,005)360 = 6,02, тогда месячная выплата должна равняться 1800 х (6,02)/5,02, что примерно составляет 2160 долларов в месяц.
Еще один пример. Предположим, вы взяли машину в кредит и после первоначального взноса должны выплатить 18 000 долларов за 5 лет с годовой ставкой 4 %. Без процентов вы должны были бы платить 300 долларов (18 000 ÷ 60) в месяц. Так как ставка процента за первый месяц будет составлять 18 000 х 0,04/12 = 720/12 = 60 долларов, отсюда следует, что платить в месяц нужно не больше 300 + 60 = 360 долларов.
Здесь месячный процент i = 0,04/12 = 0,00333. Применим нашу формулу и получим: