litbaza книги онлайнПсихологияСомневайся во всем - Рене Декарт

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 25 26 27 28 29 30 31 32 33 ... 68
Перейти на страницу:

Правило XVIII

Для этой цели необходимы только четыре действия: сложение, вычитание, умножение и деление. Двумя последними из них часто здесь даже нет надобности пользоваться как во избежание ненужных усложнений, так и потому, что в дальнейшем они могут быть более легко выполнимы

Декарт полагает, что и в математике многочисленные сложные правила можно свести к нескольким исходным простым правилам. Он наглядно иллюстрирует, как можно находить искомые величины с помощью четырех действий. Сначала он показывает это алгебраически, потом геометрически.

Большое количество правил часто обусловливается невежеством ученых; вещи, которые можно свести к единому и всеобщему принципу, утрачивают свою ясность, когда их разбивают по многим специальным правилам. Вот почему все те наши действия, которыми надлежит пользоваться при исследовании вопросов, т. е. именно при выведении одних величин из других данных, мы сводим лишь к четырем главным. Что этих действий достаточно, мы увидим из самого их объяснения.

А именно, когда мы узнаем какую-либо величину благодаря тому, что нам даны части, составляющие ее, то мы пользуемся сложением. Когда мы узнаем часть благодаря тому, что нам дано целое и превышение целого над этой частью, то такое действие будет вычитанием; и нет иных способов выведения одной величины из других величин, взятых в абсолютном смысле, в которых она содержится как бы то ни было. Но если какая-либо величина находится между другими, от которых она совершенно отлична и которые ее совсем не содержат в себе, то ее необходимо поставить в какое-либо отношение к последним. Это отношение, или соотношение, если его нужно отыскивать прямо, можно найти путем умножения, а если его нужно отыскивать косвенно, то путем деления.

Для лучшего уразумения этих двух пунктов нужно понять, что единица, о которой мы уже говорили, является здесь принципом, или основой, всех отношений и что в ряде последовательно пропорциональных величин она занимает первую ступень, данные величины — вторую, искомые — третью, четвертую и все остальные, если отношение оказывается прямым; если же оно косвенное, то искомая величина занимает вторую ступень и другие промежуточные, а данная величина — последнюю.

Ибо когда говорится, что единица относится к а или к данному числу 5 так же, как b или данное число 7 относится к искомому ab или 35, то а и b в этом случае находятся на второй ступени, произведение же их ab — на третьей. То же самое, когда добавляют: единица относится к с или 9 так же, как ab или 35 относятся к искомому abc или 315, в этом случае abc находятся на четвертой ступени, будучи произведением двойного умножения ab на с, величин, находящихся на второй ступени, и т. д. Подобно этому: как единица относится к а < или > 5, так же и а < или > 5 относится к а² или 25; или еще: как единица относится к а 5, так же и а2 25 относится к а3 125; или, наконец: как единица относится к а или 5, так же и а3 или 125 относится к а4, т. е. к 625, и т. д. Конечно, действие умножения производится одинаково, умножается ли величина на самое себя или на какую-нибудь совсем другую величину.

В случае же, если говорится: как единица относится к а или 5 к данному делителю, так же В или 7, искомое число, относится к ab или 35, данному делимому, то здесь порядок смешанный и непрямой, вследствие чего искомое В не может быть найдено иначе, как путем деления данного ab на а — тоже данное. То же самое, когда говорится: как единица относится к А или искомому числу 5, так же и А или 5 искомое относится к а² или 25 данному. Или еще: как единица относится к А < или > 5 искомому, так же и А² или 25 искомое относится к а³ или 125 данному и т. д. Мы объединяем все эти действия под названием деления, хотя и нужно заметить, что два последних вида заключают в себе больше трудностей, чем первые, потому что в них искомая величина встречается чаще и, следовательно, имеет больше отношений. Смысл этих примеров тот же самый, как если бы говорилось, что нужно извлечь квадратный корень из а² (или) 25 или кубичный из а³ или 125 и т. д. Такой способ выражения, употребительный среди счетчиков, является равнозначным — пользуясь также термином геометров — выражением, обозначающим действие отыскания средней пропорциональной между наперед взятой величиной, называемой нами единицей, и той, которая обозначается а², или двух среднепропорциональных между единицей и а³ и т. д.

Отсюда нетрудно сделать вывод, почему эти два действия удовлетворяют в отыскании любых величин, которые должны выводиться из других величин по тому или иному отношению. Уразумев это, нам остается объяснить, как эти действия должны быть представлены рассмотрению воображения и как их нужно сделать наглядными, для того чтобы затем объяснить их употребление или обращение с ними.

Если нам нужно произвести сложение или вычитание, то мы будем представлять предмет в виде линии или величины, обладающей протяжением, в которой нужно рассматривать только длину, так как если нужно прибавить линию а Сомневайся во всемк линии bСомневайся во всем,

то мы соединим их друг с другом таким образом: аb

Сомневайся во всем

и получим сумму c.

Сомневайся во всем

Если же, наоборот, нужно вычесть меньшую величину из большей, т. е.

bСомневайся во всемиз аСомневайся во всем,

то мы наложим их одну на другую таким образом:

Сомневайся во всем

и получим часть большей, которая не может быть прикрыта меньшей, а именно:Сомневайся во всем.

В умножении мы будем представлять данные величины тоже в виде линий, но вообразим, что они составляют прямоугольник. Если мы умножаем аСомневайся во всем на bСомневайся во всем, то поставим их в виде прямого угла

1 ... 25 26 27 28 29 30 31 32 33 ... 68
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?