Шрифт:
Интервал:
Закладка:
Величайшие математические умы в истории – и древнегреческие мудрецы Пифагор и Евклид, и средневековый итальянский ученый Леонардо Пизанский по прозвищу Фибоначчи, и астроном эпохи Возрождения Иоганн Кеплер, и современные научные светила, например, физик из Оксфорда Роджер Пенроуз, немало часов провели в размышлениях над этим простым соотношением и его свойствами. Однако золотое сечение чарует отнюдь не только математиков. Биологи, художники, историки, музыканты, архитекторы, психологи и даже мистики – все они размышляли над тем, почему это число столь вездесуще и в чем его притягательность. По сути дела, можно, пожалуй, сказать, что золотое сечение вдохновляло мыслителей из всех отраслей знания – и в этом с ним не в силах сравниться никакое другое число в истории математики.
Даже простому вопросу о происхождении названия «золотое сечение» посвящено огромное количество исследований, а особенно глубоко этим интересовался канадский математик и писатель Роджер Герц-Фишлер, о чем и рассказано в его превосходной книге «A Mathematical History of the Golden Number» («Математическая история золотого сечения»). Учитывая, какой пристальный интерес вызывало это число еще со времен античности, можно было бы подумать, что и название это античного происхождения. И в самом деле, некоторые авторитетные труды по истории математики, например, «Рождение математики во времена Платона» Франсуа Ласерре (François Lasserre. «The Birth of Mathematics in the Age of Plato») и «История математики» Карла Б. Бойера (Carl B. Boyer. «History of Mathematics»), возводят это название, соответственно, к XVI и XVII векам. Однако дело, скорее всего, не в этом. Насколько я могу судить по обширным источниковедческим данным, впервые это словосочетание применил в 1835 году немецкий математик Мартин Ом (брат знаменитого физика Георга Симона Ома, в честь которого назван закон Ома в электромагнетизме) во втором издании своей книги «Чистая элементарная математика» (Martin Ohm. «Die Reine Elementar-Mathematik»). В одной сноске Ом пишет: «Подобное разделение произвольного отрезка на две части принято также называть золотым сечением». Формулировка Ома однако создает впечатление, что он не сам придумал этот термин, а скорее привел уже принятое название. Тем не менее, в первом издании книги, опубликованном в 1826 году, Ом этого названия не приводит, а это заставляет сделать по крайней мере тот вывод, что выражение «золотое сечение» (нем. «der Goldene Schnitt») завоевало популярность лишь к 1835 году. Вероятно, ранее это было лишь разговорное выражение, применявшееся преимущественно в математических кругах. Однако нет никаких сомнений, что после книги Ома термин «золотое сечение» стал часто повторяться в немецкой литературе по математике и искусствоведению. А в англоязычной печати это выражение, по всей видимости, дебютировало в статье Джеймса Салли (James Sully) по эстетике, которая появилась в девятом издании Британской энциклопедии в 1875 году. Салли описывает «интересное экспериментальное исследование… проведенное Густавом Теодором Фехнером (известным немецким физиком и первопроходцем в области психологии, жившим в XIX веке) о том, что «золотое сечение» первоначально было именно зримой пропорцией» (об экспериментах Фехнера мы подробно поговорим в главе 7). В математическом контексте этот термин впервые встретился в англоязычной литературе, по всей видимости, в статье Э. Эккерманна, которая так и называлась «Золотое сечение» (E. Ackermann. «The Golden Section») и была напечатана в журнале «American Mathematical Monthly» в 1895 году, а также – примерно в это же время, в 1898 году – в книге «Введение в алгебру» известного преподавателя и писателя Дж. Кристала (1851–1911). Позвольте мне отметить любопытства ради, что единственное определение «золотого числа», появившееся в издании французской энциклопедии «Nouveau Larousse Illustré» 1900 года, гласит: «Число, определяющее каждый год лунного цикла». Это относится к положению календарного года в пределах 19-летнего цикла, после которого фазы луны снова приходятся на те же даты. Очевидно, во французскую математическую номенклатуру «золотое число» и тем более «золотое сечение» проникало гораздо дольше.
Однако почему это вообще так важно? Из-за чего, собственно, это число или геометрическая пропорция так сильно нас интересуют? Привлекательность золотого сечения в первую очередь коренится в том факте, что оно обладает прямо-таки пугающим свойством вылезать там, где его никак не ожидаешь.
Возьмем, к примеру, самое обычное яблоко – фрукт, который часто и, вероятно, ошибочно ассоциируется с древом познания, играющим столь заметную роль в библейском рассказе о грехопадении – и разрежем его поперек. И мы увидим, что яблочные семечки образуют пятиконечную звезду – она же пентаграмма (рис. 3). Каждый из пяти равнобедренных треугольников, составляющих лучи пентаграммы, обладает таким свойством, что соотношение длины его длинной стороны к короткой, то есть к основанию, равно золотому сечению – 1,618… Правда, вы, вероятно, решите, что это не так уж и удивительно. В конце концов, золотое сечение и определяется в первую очередь как геометрическая пропорция, так что, вероятно, не надо так уж поражаться, если эта пропорция встречается в некоторых геометрических фигурах.
Рис. 3
Однако это лишь верхушка айсберга. Согласно буддистской традиции, Будда во время одной своей проповеди не проронил ни слова, а всего-навсего показал слушателям цветок. Чему может научить нас цветок? Скажем, роза часто служит примером природной симметрии, гармонии, любви и хрупкости. Индийский поэт Рабиндранат Тагор (1861–1941) в своей «Религии человека» пишет: «Нам почему-то кажется, что роза – это язык, который нашла любовь, чтобы достичь наших сердец». Предположим, вам нужно качественно оценить симметричное устройство розы. Возьмите розу и препарируйте ее, чтобы разобраться, каким образом ее внешние лепестки накладываются на внутренние. Как я показываю в главе 5, вы обнаружите, что лепестки расположены в соответствии с математическим законом, основанном на золотом сечении.
Рис. 4
Теперь обратимся к царству животных: все мы хорошо знакомы с чарующе прекрасными спиральными структурами многих раковин моллюсков, например, вида Nautilus pompilius (рис. 4). Между прочим, такую раковину держит в руке танцующий Шива из индийских легенд – это символ одного из орудий творения. Кроме того, структура этих раковин вдохновляла и многих зодчих. Например, американский архитектор Фрэнк Ллойд Райт (1869–1959) положил эту структуру в основу здания музея Гуггенхайма в Нью-Йорке. Попав в музей, посетители поднимаются по спиральному пандусу, насыщая воображение созерцанием произведений искусства – точно так же, как моллюск выстраивает новые спиральные камеры, заполняя свое физическое пространство. В главе 5 мы увидим, что рост спиральных раковин также подчиняется правилу, основанному на золотом сечении.