litbaza книги онлайнДомашняяПараллельные миры. Об устройстве мироздания, высших измерениях и будущем космоса - Митио Каку

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 26 27 28 29 30 31 32 33 34 ... 121
Перейти на страницу:

Как могли бы выглядеть другие вселенные?

Идея Мультивселенной весьма привлекательна, потому что все, что нам нужно сделать, – это предположить, что спонтанные нарушения происходят беспорядочно. Не нужно делать никаких других предположений. Каждый раз, как какая-либо вселенная выбрасывает «бутон» другой вселенной, физические постоянные уходят от первоначальных, создавая новые законы физики. Если это действительно так, то в каждой новой вселенной может сложиться совершенно новая реальность. Но тут возникает потрясающий вопрос: как выглядят эти другие вселенные? Ключом к пониманию физики параллельных вселенных является знание того, как эти вселенные созданы, то есть точное понимание того, как происходит спонтанное нарушение.

Когда происходит спонтанное нарушение и возникает вселенная, это также нарушает симметрию первоначальной теории. Для физика красота – это симметрия и простота. Если теория совершенна, то это означает, что в ней заложена абсолютная симметрия, которая может объяснить множество данных наиболее сжатым и экономичным путем. Точнее, уравнение считается совершенным, если оно остается неизменным, когда мы меняем его компоненты между собой. Залогом обнаружения скрытой в природе симметрии оказывается то, что явления, кажущиеся различными, по сути своей есть проявления одного и того же, связаны между собой симметрией. Например, мы можем показать, что электричество и магнетизм в действительности разные аспекты одного и того же явления, поскольку существует симметрия, которая может сделать их взаимозаменяемыми в рамках уравнений Максвелла. Подобным образом Эйнштейн доказал, что теория относительности может превращать пространство во время и наоборот, поскольку они являются частью целого, материи пространства-времени.

Представьте снежинку, в которой мы видим совершенную шестикратную симметрию – источник бесконечного восхищения. Суть ее красоты в том, что она не изменяется при повороте снежинки на 60°. Это также означает, что любое уравнение, которое мы составим для описания снежинки, должно отражать тот факт, что она остается неизменной при повороте на количество градусов, кратное 60. Математически мы говорим, что снежинка обладает симметрией С6.

В симметрии закодирована красота природы. Но в действительности сегодня симметрии нарушены. Четыре фундаментальных взаимодействия Вселенной совсем не похожи друг на друга. По сути, Вселенная полна неравномерностей и дефектов; нас окружают обломки и осколки первоначальной фундаментальной симметрии, вдребезги расколотые Большим взрывом. Таким образом, ключом к пониманию возможных параллельных вселенных служит понимание «нарушения симметрии», то есть того, как симметрия могла нарушиться после Большого взрыва. Как сказал Дейвид Гросс: «Секрет природы – симметрия, но значительная часть мировой структуры является следствием нарушения симметрии»{61}.

Представьте, что красивое зеркало разбивается на тысячи осколков. Первоначальное зеркало обладало совершенной симметрией. Но, когда оно разбилось, первоначальная симметрия оказалась утрачена. Определив, как именно нарушилась симметрия, можно понять, как разбилось зеркало.

Нарушение симметрии

Чтобы понять этот факт, задумайтесь о развитии эмбриона. На ранних стадиях, то есть через несколько дней после зачатия, эмбрион – это совершенная сфера, состоящая из клеток. Каждая клетка ничем не отличается от остальных. Сфера выглядит одинаково, с какой бы стороны мы на нее ни взглянули. Физики утверждают, что в этом случае эмбрион обладает симметрией О (3), то есть остается неизменным, по какой бы оси вращения вы его ни поворачивали.

Хотя эмбрион прекрасен и изящен, он довольно бесполезен. Представляя собой совершенную сферу, он не может выполнять какую-либо полезную функцию или взаимодействовать с окружающей средой. Однако со временем эмбрион нарушает эту симметрию: у него развиваются крошечная головка и тело, и он становится похожим на кеглю. Хотя изначальная сферическая симметрия нарушена, эмбриону все же присуща остаточная симметрия – он остается неизменным при вращении вокруг собственной оси. Таким образом, он обладает цилиндрической симметрией. Математически это означает, что первоначальная симметрия О (3) сферы свелась к симметрии О (2) цилиндра.

Однако нарушение симметрии О (3) могло бы происходить иначе. Например, у морской звезды нет ни цилиндрической, ни двусторонней симметрии; вместо этого при нарушении сферической симметрии у нее появляется симметрия С5 (которая остается неизменной при повороте на 72°), что придает ей форму пятиугольной звезды. Иными словами, то, каким образом нарушается симметрия О (3), определяет форму организма при рождении.

Ученые считают, что Вселенная подобным образом зародилась в состоянии идеальной симметрии, где все взаимодействия были объединены в целое. Вселенная была совершенной, симметричной, но довольно бесполезной. Та жизнь, которая нам известна, не могла бы существовать в этом идеальном состоянии. Чтобы появилась жизнь, при остывании Вселенной ее симметрия должна была нарушиться.

Симметрия и Стандартная модель

Подобным же образом для того, чтобы понять, как выглядят параллельные вселенные, мы для начала должны понять симметрию сильного, слабого и электромагнитного взаимодействия. Например, сильное взаимодействие основано на трех кварках, которые ученые метят, символически приписывая им «цвета» (например, красный, белый и синий). Мы хотим, чтобы уравнения оставались неизменными, если поменяем местами эти три цветных кварка. Мы говорим, что уравнения обладают симметрией SU (3), то есть они останутся неизменными, если мы перемешаем эти три кварка. Ученые считают, что теория, обладающая симметрией SU (3), представляет наиболее точное описание сильных взаимодействий (называемое квантовой хромодинамикой). Если бы у нас был гигантский суперкомпьютер, то только по массам кварков и силе их взаимодействия мы теоретически могли бы вычислить все свойства протона и нейтрона и все характеристики ядерной физики.

Пусть у нас есть два лептона – электрон и нейтрино. Если мы поменяем их местами в уравнении, то у нас будет симметрия SU (2). Мы можем добавить свет, группа симметрии которого U (1). (Эта группа симметрии меняет местами между собой различные составляющие или поляризацию света.) Таким образом, группой симметрии слабого и электромагнитного взаимодействия является SU (2) × U (1).

Если мы просто «склеим» эти три теории, то получим (и это неудивительно) симметрию SU (3) × SU (2) × U (l), иными словами, симметрию, которая отдельно «склеивает» три кварка между собой и отдельно два лептона между собой (но не смешивает кварки и лептоны). В результате получим теорию Стандартной модели – возможно, одну из наиболее успешных теорий в истории человечества. Как утверждает Гордон Кейн из Мичиганского университета: «Все, что происходит в нашем мире (кроме воздействия гравитации), проистекает из взаимодействия частиц согласно Стандартной модели»{62}. Некоторые из ее положений были экспериментально проверены в лабораторных условиях и оправдались с точностью до одной стомиллионной. (Вообще, физики, которые собрали вместе составляющие Стандартной модели, получили 20 Нобелевских премий[18].)

1 ... 26 27 28 29 30 31 32 33 34 ... 121
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?