Шрифт:
Интервал:
Закладка:
Фиг. 3 показывает падение напряжения на Lgnd для следующих случаев:
• CСР1 = 10 пФ, Lw = 100 нГ
• CСР1 = 100 пФ, Lw = 100 нГ
• CСР1 = 0.1 мкФ, Lw = 100 нГ
• CСР1 = 0.1 мкФ, Lw = 0
При прохождении помехи на индуктивности внутренней земли устройства создается падение напряжения достаточное для сбоя. Увидеть такую помеху в земле схемы при помощи запоминающего осциллографа весьма затруднительно по ряду причин, в том числе — по причине ограниченной скорости сэмплирования большинства современных осциллографов.
Из этого следует, что даже сплошной земляной слой не спасет устройство фиг.1 от сбоев, и в нем "перекосы" земляных потенциалов при прохождении НП могут достигать десятков вольт.
Устойчивость устройства к воздействию НП не может быть достигнута только за счет утолщения земляных проводников, заливки свободных мест печатной платы земляными полигонами или использования многослойных плат. За счет одних только "толстых" земель можно получить выигрыш в помехоустойчивости примерно в 1.5–3 раза, что, на фоне помеховых сигналов фиг.3, совершенно недостаточно.
Развязка внешних сигналов при помощи оптронов тоже слывет хорошим средством повышения помехоустойчивости, но на самом деле не является надежной защитой от НП. Типично емкость оптрона равна 0.5 пФ, при подстановке этого значения в качестве Ccp1 падение напряжения на индуктивности Lgnd в схеме фиг.2 уменьшается до 4 В, что все равно достаточно для сбоя. Если устройство имеет несколько опторазвязанных линий ввода-вывода, то емкость Ccp1 будет, соответственно, больше.
Радикального уменьшения помехового напряжения во внутренней земле устройства можно достичь если правильно скомпоновать устройство и выбрать оптимальную точку заземления. Например, вполне очевидно, что во внутренней земле устройства фиг.4 помеховые токи вообще не текут на участке "а" — "в", соответственно, у узлов 1 и 2 нет причин для сбоя.
Устройство фиг.4 можно представить так: внутренняя земля устройства разделена на две части, чистую ("а"-"в") и грязную (в-г). По чистой земле помеховые токи не протекают, к этой земле можно присоединять все узлы, потенциально чувствительные к помехам (узлы 1 и 2). Помеховые токи текут только по грязной земле, с которой можно связывать только узлы нечувствительные к помехам (узлы 3 и 4).
Реальная картина вряд ли будет настолько идиллическая, как показанная на фиг.4. Паразитную емкость Сх очень редко удается сосредоточить только в грязной земле, частично она существует и в чистой левой части. За счет этой емкости полностью избавиться от помеховых токов в чистой земле не удается.
Проиллюстрируем сказанное несколькими примерами.
Пример 1
На фиг.5 представлена схема кварцевого генератора микроконтроллера. Основу генератора составляет скоростной инвертирующий усилитель, встроенный в микроконтроллер. Режим работы по постоянному току задается встроенным высокоомным резистором, включенным между входом и выходом этого усилителя. Для корректной работы генератора дополнительно к внешнему кварцевому резонатору X1 требуются два конденсатора малой емкости, С1 и С2. Конденсаторы и земляная ножка микропроцессора подключены к внутренней земле устройства.
Точки подключения конденсаторов и микроконтроллера к земле печатной платы играют существенную роль. Малейший перекос земляных потенциалов между С1 и VSS, возникающий при прохождении НП по земле устройства, будет многократно усилен и попадет внутрь микроконтроллера как ложный короткий тактовый импульс. Поскольку длительность ложного тактового импульса намного меньше чем длительность "настоящих" тактовых импульсов, внутренняя логика микропроцессора может придти в непредсказуемое состояние. Микропроцессор "зависнет", и не всякий встроенный сторожевой таймер сможет его сбросить, так как в некоторых микроконтроллерах сторожевые таймеры тактируются от общего генератора, и сами могут "зависнуть" после воздействия такой помехи.
На фиг.6 показаны примеры разводки этого узла на печатной плате.
Фрагмент слева разведен обычным образом, в предположении что потенциалы земель во всех точках печатной платы равны. Конденсаторы С1 и С2 подключены к земле точно так же, как и все остальные элементы схемы, толщина земельных проводников выбрана большой. Такая разводка встречается часто, но, к сожалению, она не обеспечивает хорошей помехоустойчивости.
Фрагмент справа разведен таким образом, чтобы помеховый ток не протекал по дорожке, соединяющей конденсаторы С1 и С2 с земляной ножкой микроконтроллера. Эта дорожка образует участок чистой земли. Помехоустойчивость устройства с такой разводкой максимальна.
Пример 2
Вход сброса микроконтроллера является еще одной цепью, подверженной влиянию наносекундных помех. Нередко разработчики игнорируют этот очевидный факт и используют разветвленную цепь сброса, непосредственно подключенную к различным узлам на плате. Перекос земель между источником сигнала сброса (часто это супервизор питания) и микроконтроллером вызывает ложный сброс устройства.
Схемотехнически решить эту проблему нетрудно, достаточно на вход микроконтроллера добавить простую RC-цепочку, как показано на фиг.7. Однако такое решение должно сопровождаться и правильной разводкой земель, иначе никакой пользы оно не принесет.
Требования к разводке дорожки, соединяющей С3 с земляной ножкой микроконтроллера, такие же как для первого примера: никакие другие детали кроме С3 к этой дорожке подключать нельзя. Исключение составляют только конденсаторы обвязки кварца (С1 и С2 на фиг.5).
Пример 3
Обеспечить высокую помехоустойчивость устройства можно на этапе общей компоновки. Типичное устройство, при компоновке которого вопросы помехоустойчивости не были приняты во внимание, показано на фиг. 8. Для подключения внешних сигналов и питания в нем использованы все четыре кромки печатной платы. Микропроцессор расположен почти в центре печатной платы, то есть в месте максимально подверженном влиянию наносекундных помех. В случае использования сплошной земли, очень вероятно что такое устройство будет сбоить.
Не меняя компоновки, существенного улучшения помехоустойчивости в таком устройстве можно достичь, если разделить земли на чистую и грязную, как условно показано на фиг.8. Наружный контур земли является грязной землей, он специально предназначен для распространения наносекундных помех. К грязной земле нельзя подключать устройства, чувствительные к помехам.
Внутренний "полуостров" чистой земли соединен с грязной землей в одной точке. Во все сигнальные линии, проходящие между чистой и грязной землями, необходимо добавить резисторы или дроссели, чтобы преградить путь помехам (барьеры).
Дальнейшее улучшение помехоустойчивости достигается перекомпоновкой устройства, как показано на фиг.9. Видно, что все терминалы сосредоточены с одной "грязной" стороны платы. Тем самым путь распространения помех по земле платы значительно сокращен.
Барьеры
После того как внутренние земли устройства разделены на чистые и грязные, возникает вопрос —