litbaza книги онлайнДомашняяАлекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 28 29 30 31 32 33 34 35 36 ... 103
Перейти на страницу:

Затем Сарасвати рассказал историю о том, как однажды в лесу встретились два правителя. И вот первый правитель сказал второму, что ему достаточно лишь раз взглянуть на дерево, чтобы сказать, сколько на нем листьев, а затем произнес число. Второй правитель не поверил ему и принялся, срывая листья с дерева, пересчитывать их по одному. Закончив счет, он получил число — то самое, которое сообщил ему первый правитель. Сарасвати заметил, что эта история свидетельствует о том, что у древних индийцев была способность пересчитывать много объектов, просто рассматривая их как целое, вместо того чтобы перебирать их один за другим. Это и многие другие навыки той эпохи, добавил он, ныне утеряны. «Все эти потерянные знания можно восстановить с помощью серьезного созерцания, серьезной медитации и серьезных усилий», — сказал он. Процесс изучения древних писаний с целью спасения древнего знания, добавил он, — это именно то, что Тиртха делал с математикой.

В течение всей аудиенции в комнате присутствовало около двух десятков людей — они хранили молчание, пока Шанкарачарья говорил. Ближе к концу церемонии один человек среднего возраста — как выяснилось, консультант по программному обеспечению из Бангалора — задал вопрос о значении числа 1062. Это число присутствует в Ведах, сказал он, а потому должно что-нибудь означать. Шанкарачарья согласился с ним. И далее началась дискуссия по поводу того, что индийское правительство пренебрегает наследием страны. Шанкарачарья посетовал, что тратит большую часть своего времени и сил на защиту традиционной культуры, в связи с чем ему не удается уделять достаточно времени математике. В тот год он посвятил ей всего пятнадцать дней…

* * *

На следующий день за завтраком я спросил вчерашнего компьютерного консультанта, чем вызван его интерес к числу 1062, и он прочел мне целую лекцию о научных достижениях Древней Индии. Тысячи лет назад, сказал он, индийцы знали о мире гораздо больше, чем известно сейчас. Он упомянул о том, что они могли летать на аэропланах. Когда я спросил, имеются ли тому какие-либо доказательства, он ответил, что археологи нашли вырезанные на камне изображения самолетов, которым тысячи лет. Использовали ли эти самолеты реактивные двигатели? Нет, сказал он, они черпали энергию из магнитного поля Земли. Эти летательные аппараты были сделаны из композитных материалов. Скорость их была небольшой — между 100 и 150 километрами в час. Постепенно мои вопросы стали раздражать его все больше и больше, поскольку мое желание получить должное научное объяснение воспринималось им как оскорбление индийского научного наследия. В конце концов он больше не захотел со мной говорить.

Хотя ведическое знание является фантастическим, оккультистским и, в общем, довольно сомнительным, ведическая математика вполне выдерживает тщательное, критическое рассмотрение, несмотря на то что сутры по большей части туманны вплоть до полного отсутствия смысла, а принятие истории об их происхождении в Ведах требует временной атрофии способности к сомнению. Некоторые из методов столь специфичны, что представляются не более чем курьезами — взять хотя бы подсказки для превращения дроби 1/19 в десятичную. Но некоторые и правда очень ясные и точные.

Рассмотрим пример умножения 57 × 43, к которому мы уже обращались в данной главе. Стандартный метод умножения этих чисел состоит в том, чтобы записать две промежуточных строки, а затем сложить их. Но, используя третью сутру — «Вертикально и крест-накрест», — можно довольно ловко найти ответ таким способом:

Шаг 1

Запишем числа друг над другом:

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Шаг 2

Перемножим цифры в правом столбце: 7 × 3 = 21. Последняя цифра этого числа есть последняя цифра в ответе. Запишем ее внизу в правом столбце и перенесем возникшую 2:

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Шаг 3

Найдем сумму скрестных произведений: (5 × 3) + (7 × 4) = 15 + 28 = 43. Прибавим перенесенную 2, что даст 45. Последняя цифра этого числа — то есть 5 — записывается внизу в левом столбце, а 4 переносится:

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Шаг 4

Перемножим цифры в левом столбце: 5 × 4 = 20. Прибавим к этому перенесенную 4, что даст 24, и получим окончательный ответ, 2451:

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Данный метод можно обобщить на умножение чисел любой величины. Изменения затрагивают только порядок, в котором числа скрестно перемножаются.

Рассмотрим, например, умножение 376 × 852:

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Шаг 1

Начинаем с правого столбца: 6 × 2 = 12:

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Шаг 2

Далее берем сумму скрестных произведений между столбцом единиц и столбцом десяток: (7 × 2) + (6 × 5) = 44 плюс перенесенная 1. Получается 45:

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Шаг 3

Теперь переходим к скрестным произведениям между столбцом единиц и столбцом сотен и прибавляем к ним вертикальное произведение в столбце десяток: (3 × 2) + (8 × 6) + (7 × 5) = 89 плюс еще перенесенная 4. Получается 93:

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики

Шаг 4

Сдвигаясь налево, перемножим накрест первые два столбца: (3 × 5) + (7 × 8) = 71, к чему прибавим перенесенную 9. Получается 80:

1 ... 28 29 30 31 32 33 34 35 36 ... 103
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?