Шрифт:
Интервал:
Закладка:
Так же обстоит дело и с подсчетом нейронов. Оценки их общего количества радикально различаются: от десяти миллиардов до одного триллиона [134]. Это может показаться удивительным, что в наши дни, в век техники, способной расшифровать человеческий геном, мы не можем точно посчитать количество клеток мозга, но это так. Различные методы приносят различные результаты. Трудно понять, выдержат ли какие-либо из существующих на сегодня величин проверку временем.
По словам швейцарского исследователя Андреа Вольтерра, ставки очень высоки. «Если глия участвует в передаче сигналов, то выходит, что процессы в мозге на много порядков сложнее, чем считалось прежде. Нейробиологи, которые долгое время фокусировались на нейронах, будут вынуждены пересмотреть все свои представления [135]». Но в том-то и проблема, получается, что не только не вынесен вердикт, но и судьи, похоже, зашли в тупик в попытках прийти к единому мнению о том, что делать дальше. Никто не может предложить экспериментальный подход, который был бы принят всеми в качестве потенциального источника окончательного решения о соотношении функций нервных клеток. В обзорной статье в журнале Nature в 2010 г. нейробиолог из Лондонского университета Дэвид Этвелл пишет: «Не существует простого и ясного эксперимента, иначе бы я его провел… так же как и большинство других ученых» [136].
Попробуйте представить эксперимент, который принес бы недвусмысленные результаты. Пусть мы хотим увидеть природу мысли (если таковая существует) в отсутствие глиальных клеток. Поскольку последние являются неотъемлемой частью функционирования нейронов, невозможно разработать исследование на человеке, в котором глиальные клетки были бы деактивированы. Без глиальных клеток нейроны не будут нормально работать. Даже выборочная деактивация компонентов функции глиальных клеток приведет к тому же результату. Если, допустим, нейроны были бы передатчиками мыслей, генерируемых глиальными клетками, при этом подходе мы бы просто ничего не увидели и смогли сделать еще меньше выводов. Кроме того, сейчас у нас нет возможности определить, какие эмерджентные свойства могут присутствовать у групп глиальных клеток. Для проведения идеального исследования нам необходимо создать функционирующий мозг только из глиальных клеток, затем прикрепить его к телу и изучить последствия этой операции.
С моей точки зрения, самый важный вывод из этой истории с глией и нейронами – вывод о роли научной методологии в выдумывании гипотез. По большей части из-за того, что нейроны было проще изучать путем экспериментов, у нас превалировало мнение, что нейроны являются основным источником познания. Между тем до последнего времени наука игнорировала более трудные для исследования клетки мозга, которые занимают по крайней мере не меньший (или, возможно, больший) объем мозга. Если бы глиальные клетки было проще, чем нейроны, у нас бы, возможно, было совершенно иное представление о том, как мозг создает разум. Майкен Недергор, исследователь глиальной ткани из Университета Рочестера, относит большую часть проблем в понимании глии на счет обусловленных культурой предубеждений. «Все нейробиологи проходят подготовку в нейронно-центристских лабораториях, и каждый до сих пор уверен, что астроциты работают как нейроны. Но астроциты функционируют совершенно иначе. Они используют другой язык. Они используют другой способ осуществления приема и передачи. И они могут работать в совершенно ином временном масштабе, нежели нейроны» [137].
Наши представления о том, как мозг создает мысли, зависят от используемых нами инструментов
Наши представления о том, как мозг создает мысли, зависят от используемых нами инструментов. Я привел пример глиальной передачи сигналов, поскольку эта тема поднимает серьезный вопрос об эволюции наших текущих представлений о работе мозга и создании мыслей. Не знаю, подтвердится ли в конечном итоге важность глиальной передачи сигналов. Хуже того, с учетом честного признания, сделанного многими ведущими специалистами в этой области, сомнительно, что проблема решится существующими в настоящее время инструментами. Возможно, сложность нейронно-глиальных взаимодействий будет препятствовать достижению полной ясности в этой области и в обозримом будущем. На этот период нам остается только теоретизирование и интерпретация противоречивых данных. От того, как мы интегрируем эту неточную и двусмысленную информацию, будет зависеть образ нашего мышления, который сам по себе подвергается воздействию групповых и культурных влияний, влияющих на наше восприятие [138]. Не обращать внимания на эти неотъемлемые методологические сложности – значит, совершать ошибку того же толка, что и утверждать, будто мы близки к пониманию темной материи, темной энергии, природы гравитации и тысячи других великих тайн, которые не сдаются лучшим умам и величайшим техническим достижениям. В космологических кругах принято говорить, что видимая Вселенная – всего лишь малая частица сущего. Все остальное – темная материя и темная энергия – это предмет экспериментов, спекуляций, смелых предположений и старой доброй научной фантастики. Трудно избежать подобного же взгляда на мозг. Возможно, глиальные клетки следует рассматривать как темную материю мозга, а не как его белое вещество.
А что, если…
Чтобы продемонстрировать, насколько трудно отступить от предрассудков, можно рассмотреть следующее гипотетическое предположение. Если примеры группового интеллектуального поведения наблюдаются по всему животному миру, возможно, мы также обладаем аналогичной клеточной системой, обеспечивающей совместный «интеллект»? Задумайтесь на мгновение и спросите себя, что вы чувствуете при мысли, что ваш разум отчасти движим биологическими механизмами, которые могут действовать вне рамок индивидуального мозга. Это вдохновляет, подавляет, кажется бессмысленным, тревожит или возбуждает? Окажет ли это влияние на чувство самоуважения, нравственных ценностей, отношение к другим, религиозные убеждения? То, как вы воспринимаете эту возможность, теснейшим образом связано с тем, как вы ощущаете собственный разум – кому или чему вы приписываете агентивность, каковы ваше чувство Я и ощущение личной уникальности. Это также имеет отношение к тому, как вы воспринимаете себя по отношению к остальной части животного мира, оцениваете перспективы идей в отсутствие убедительных доказательств, воспринимаете собственную способность разбираться во мнениях специалистов, насколько вы придерживаетесь популярных культурных и научных убеждений и верите, что наука рано или поздно откроет все тайны Вселенной. Список факторов практически бесконечен.
Хотя какие-то выводы о групповом мышлении можно сделать на основании поведения других видов, твердые доказательства его существования у людей отсутствуют и едва ли будут получены в обозримом будущем. В мышлении о пределах и измерениях разума метафоры информации как нейромедиатора и разума как рецептора весьма привлекательны. Как и идея группового поведения как частичного пребывания под общими биологическими воздействиями. Я не могу доказать, что эти идеи правильны, но сама их возможность позволяет нам шире взглянуть на то, что нейробиология может сказать нам о разуме.
Суммируя сказанное, на уровне нейроанатомии границы разума удивительно неясны. Несмотря на сложнейшие методы, мы не уверены даже в том, сколько клеток в мозге, не говоря уже о том, как они взаимодействуют друг с другом. Возможность опосредованного биологическими закономерностями группового воздействия на мышление в разы повышает возможную степень сложности и без того непростого предмета исследования. Существуют огромные провалы в нашем понимании других имеющих отношение к групповому поведению аспектов фундаментальной науки: от эмерджентности/сложности до квантовой запутанности. Непроизвольные ментальные ощущения помогают запускать и контролировать наше самонаблюдение и наши изыскания в области разума. И все эти вопросы являются лишь несколькими из тех препятствий, с которыми сталкивается нейробиология.