Шрифт:
Интервал:
Закладка:
Он родился 25 октября 1811 года в Бург-ля-Рен — в те дни это была деревушка неподалеку от Парижа. Сейчас это пригород в департаменте О-де-Сен, на пересечении автострады №20 и трассы D60. Трасса D60 — это авеню Галуа. В 1792 году деревню Бург-ля-Рен переименовали в Бург-л'Эгалите, в духе политических потрясений того времени и сопутствующей им идеологии: «Город Королевы» заменили на «Город Равенства». В 1812 году старое название вернули, но в воздухе еще чувствовалась революция.
Отец — Николя-Габриэль Галуа — был убежденным республиканцем и вождем деревенской либеральной партии Liberté в городе Égalité, — которая видела свою основную задачу в устранении монархии. Когда в ходе наспех состряпанного компромисса 1814 года на трон вернули короля Людовика XVIII, Николя-Габриэль занял кабинет мэра города, где, учитывая его политические наклонности, ему вряд ли было комфортно.
Мать — Аделаид-Мари, урожденная Демант. Ее отец был стряпчим, то есть помощником адвоката, осуществлявшим ряд законно-правовых действий, однако без права самостоятельно вести практику; в его задачи входило формулировать мнения по поводу судебных дел. Аделаид-Мари свободно читала по-латыни и передала сыну свое классическое образование.
В течение первых двенадцати лет Эварист оставался дома, а его образованием занималась мать. Когда ему было десять, он мог поступить в коллеж в Реймсе, но мать, по-видимому, считала, что ему еще рано покидать дом. Однако в октябре 1823 года он начал посещать Коллеж Людовика Великого, который представлял собой подготовительную школу. Вскоре после того, как Эварист туда поступил, учащиеся отказались петь в школьной часовне, и юный Галуа своими глазами увидел судьбу потенциальных революционеров: добрую сотню учеников немедленно исключили. К сожалению для математики, это не послужило ему уроком.
По итогам двух лет обучения он был награжден первой премией по латыни. Однако латынь вскоре стала наводить на него тоску. В результате в школе потребовали, чтобы для улучшения успеваемости он прошел курс еще раз, но это, разумеется, навело на него тоску еще большую, и ситуация изменилась от плохой к худшей. От быстрой дороги к забвению Галуа спасла математика — этот предмет был в достаточной степени интеллектуально насыщен, чтобы пробудить в нем интерес. Но не любая математика: Галуа обратился прямо к классике — Лежандровым «Элементам геометрии». Это можно до некоторой степени сравнить с тем, как если бы современный студент-физик для начала принялся за чтение технических статей Эйнштейна. Но в математике имеется некоторый пороговый эффект, интеллектуальный переломный момент. Если студент в состоянии прорваться через несколько первых препятствий, вникнуть в особенности обозначений в данном предмете и проникнуться той мыслью, что лучший способ продвижения вперед — это понимать идеи, а не просто зазубривать их, — он или она может весело двигаться с попутным ветром в сторону все более замысловатых и манящих идей, тогда как чуть более ограниченный студент застрянет на геометрии равнобедренных треугольников.
О том, много ли приходилось Галуа трудиться над освоением основополагающей работы Лежандра, можно спорить, но, во всяком случае, эта работа его не отпугнула. Он начал читать технические статьи Лагранжа и Абеля; неудивительно, что его последующие работы находились в этой области интересов, в частности, в теории уравнений. Уравнения, похоже, были единственной вещью, владевшей вниманием Галуа. Остальная его школьная деятельность страдала в той же степени, в какой развивалось его увлечение работами математиков первой величины.
В школе Галуа был неопрятным — привычка, от которой он так никогда и не избавился. Он ставил своих учителей в тупик, решая задачи в уме вместо того, чтобы «показать, как он это сделал». Это пристрастие учителей математики, которое и сегодня огорчает многих способных молодых людей. Представьте себе, что случилось бы с подающим надежды молодым футболистом, если бы всякий раз, как он забьет гол, тренер требовал от него точной записи всех тактических шагов, которые он предпринял, а без этого гол бы не засчитывался. Такой последовательности шагов нет. Игрок увидел свободное пространство и отправил мяч именно туда, куда, как подтвердит всякий знаток игры, его и следовало отправить.
Нечто подобное имеет место со способными молодыми математиками.
Честолюбие заставляло Галуа замахиваться на большие цели: он хотел продолжать образование в одном из наиболее престижных учреждений Франции — Политехнической Школе, гнездовье французской математики. Однако же он пренебрег советом своего учителя математики, который старался научить молодого человека работать систематически, объяснять промежуточные шаги и вообще давать возможность экзаменаторам следовать за поворотами своей мысли. Крайне недоподготовленный и пагубно самонадеянный Эварист попытался сдать вступительные экзамены и провалился.
Двадцать лет спустя влиятельный французский математик Орли Теркем, издававший престижный журнал, предложил объяснение провалу Галуа: «Кандидат с более высоким интеллектуальным уровнем теряется, когда видит, что его экзаменатор глупее него: „Раз они меня не понимают, значит, это я — варвар“.» Современный комментатор, лучше осведомленный о том, что требуется для успешного общения, не будет столь критичен и ограничится замечанием, что студент с более высоким интеллектуальным уровнем должен понять, с кем он имеет дело. Собственной бескомпромиссностью Галуа не способствовал своему успеху.
Таким образом, Галуа остался в Коллеже Людовика Великого, где удача неожиданно ему улыбнулась. Учитель по имени Луи-Поль Ришар разглядел способности молодого человека, и Галуа записался на курс продвинутой математики, который тот вел. Ришар составил мнение, что Галуа настолько способный, что его следует принять в Политехническую школу без экзаменов. Весьма вероятно, Ришар примерно представлял себе, что будет, если Галуа придется сдавать экзамены. Нет свидетельств, что Ришар когда-либо высказывал свою точку зрения в Политехнической школе. Если и да, то там на нее не обратили внимания.
К 1829 году Галуа опубликовал свою первую исследовательскую работу — достаточно компетентную, но скучноватую статью о непрерывных дробях. Куда большие цели он ставил перед собой в неопубликованной работе — внести фундаментальный вклад в теорию уравнений. Он оформил некоторые из своих результатов и отправил их во Французскую академию наук, чтобы там рассмотрели возможность их публикации в своем журнале. Тогда, как и сейчас, каждую посланную для публикации статью отправляли рецензенту — специалисту в соответствующей области, — и он высказывал рекомендации относительно новизны, значимости и целесообразности публикации работы. В данном случае рецензентом был Коши — в то время, вероятно, ведущий французский математик. Поскольку он сам имел публикации в области, близкой к теме статьи Галуа, его выбор в качестве рецензента представлялся естественным.
К сожалению, он был также чрезвычайно занят. Имеется широко распространенный миф, что Коши потерял рукопись Галуа; некоторые источники предполагают, что он выбросил ее в припадке уязвленного самолюбия. Истина представляется более прозаической. Имеется письмо, направленное Коши в Академию, датированное 18 января 1830 года, в котором он извиняется за непредставленный отзыв о работе «молодого Галоа»[26], объясняет, что «страдал недомоганием и не выходил из дома», а также упоминает свой собственный мемуар.