litbaza книги онлайнДомашняяНеандерталец. В поисках исчезнувших геномов - Сванте Пэабо

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 29 30 31 32 33 34 35 36 37 ... 79
Перейти на страницу:

Я очень хотел опробовать пиросеквенирование и поэтому уговорил Хенрика Кессманна отправиться в стокгольмскую лабораторию Матиаса в Королевский технологический институт. Хенрик ухватился за возможность полюбоваться на вытянутые от удивления лица стокгольмцев, когда он поприветствует их на безупречном шведском; хоть он и вырос в Германии, мать его была шведкой, и он прекрасно говорил на ее языке. Кроме того, он лихо управлялся с данными о современном народонаселении Европы и Азии и на их основе мог реконструировать возможные генетические связи между популяциями. Что же до новых технологий – он их отлично освоил, хотя не обошлось без трудностей.

В августе 2003 года совет компании “Пиросеквенирование” подписал разрешение на использование нового инструмента американской компанией 454 Life Sciences, основанной предпринимателем-биотехнологом Джонатаном Ротбергом. 454 Life Sciencesнамеревалась улучшить методы пиросеквенирования с помощью ультрасовременной струйной автоматики. Их нововведения базировались на присоединении коротких синтетических ДНК к концам фрагментов изучаемой ДНК. С помощью этих коротких кусочков одноцепочечные нити ДНК прицеплялись к микрошарикам, и затем в жировых капельках на шариках проходила массированная амплификация присоединенных фрагментов. В результате этого гениального хода в капельках жировой эмульсии синтезировались одновременно, но по отдельности, каждая в своей капельке, сотни тысяч нитей ДНК. Затем шарики разделялись на планшетке теперь уже с тысячами лунок, и далее начинался собственно пирофосфатный этап. И наконец (и это такое серьезное “наконец”!), составлялись таблицы вспышек для каждой лунки в каждом цикле. Для этого компания позаимствовала методику регистрации световых импульсов у астрономов – ведь астрономам приходится наблюдать миллионы ночных звезд и как-то регистрировать свои наблюдения. И все это вместе позволило секвенировать за раз не девятосто шесть, а двести тысяч фрагментов ДНК!

С такими мощностями, подумал я, мы могли бы просто секвенировать все подряд фрагменты палео-ДНК из вытяжек, все, что попадется, а потом проверять, что в них содержится. Метод “массированной атаки”, по сути, прямо противоположен тем техникам, когда приходится вылавливать каждый тщательно выбранный заранее кусочек ДНК. По сравнению с пиросеквенированием метод, основанный на выискивании отдельных сегментов с помощью ПЦР, не только ужасно трудоемок, но и решительно ограничивает поле зрения только одним, заранее заданным фрагментом, лишает возможности посмотреть, какие же еще ДНК содержатся в вытяжке. И хотя с помощью тогдашнего инструментария 454 Life Science нельзя было прочитать фрагмент длиннее ста нуклеотидов, но ведь цепочки, секвенированные Алексом из мамонта и Хендриком из гигантского ленивца, все равно получались не больше ста нуклеотидов. Мне не терпелось опробовать технику 454.

О новых методиках я советовался не только с Матиасом и остальными “пиросеквенистами”. В июле 2005 года нашу лабораторию в Лейпциге посетил Эдвард Рубин, генетик, человек кипучей, неукротимой энергии. Встречи с ним я ждал с нетерпением. Он занимал должность профессора в Лоуренсовской лаборатории в Беркли, в Калифорнии, и еще являлся директором Объединенного института генома при министерстве энергетики США. Эдди считал, что будущее за клонированием ДНК в бактериях, то есть примерно за тем, с чего я сам начинал работу с мумиями еще в 1980- х в Упсале. Эти методы, убеждал он меня, стали теперь намного более эффективными, чем в те давние времена. Я согласился проверить эффективность новых методик и отправил ему в лабораторию в Беркли экстракты двух костей пещерных медведей, содержавшие, как мы уже знали, большое количество мтДНК. В его лаборатории к молекулам ДНК из этих вытяжек присоединили молекулы-транспортеры и с их помощью внедрили ДНК в бактерий. По ходу роста и деления каждой бактерии получается клон, содержащий тысячи копий уникальной ДНК из костной вытяжки. Остается взять и прочитать ДНК каждого из получившихся клонов, словно книги из обширной библиотеки. Команда Эдди использовала традиционную химию Сэнгера для секвенирования 14 тысяч случайным образом выбранных клонов из двух библиотек – о таких цифрах в 1984- м можно было только мечтать. Из 14 тысяч клонов только 389, то есть 2,7 процента, содержали цепочки ДНК, похожие на те, что имеются у собак, и, таким образом, с большой вероятностью принадлежавшие пещерным медведям. Остальное пришло от бактерий и плесени, поселившихся на костях после смерти животного. И хотя пропорция собственной медвежьей ДНК была до смешного мала, но все же результат вдохновлял: значит, ядерная ДНК все-таки есть в костях из пещер Европы!

Результаты мы опубликовали в 2005 году в Science, Эдди и его группа значились основными авторами[46]. Статья несколько претенциозно утверждала, что прочитать древний геном – да, возможно. Но уже после публикации некоторые члены моей лаборатории, рассмотрев результаты более взвешенно и произведя дополнительные расчеты, пришли к неутешительным выводам. Группа из Беркли секвенировала каждый фрагмент ДНК из библиотек, которые мы им переслали, и выявила в сумме 26 861 нуклеотид из генома пещерного медведя. Если принять во внимание, что мы использовали десятую часть грамма костной ткани для составления библиотек и что геном состоит примерно из трех миллиардов нуклеотидов, нам придется увеличить количество исследуемой ткани в сотню тысяч раз – то есть понадобится больше десяти килограммов костей. Только так нам удастся хотя бы приблизительно составить геном пещерного медведя. Предположим, мы справились с немыслимо трудоемкой задачей перемолоть такое количество костей и получить из порошка вытяжки, но секвенирование в таких масштабах обойдется в баснословную сумму. И даже если с пещерным медведем как-то можно получить результат, то в случае действительно интересных ископаемых, от которых для исследования остаются в прямом смысле крохи, количественный, “массированный” подход просто бесполезен. Я лично считал, что секвенирование неандертальского генома с помощью клонирования в бактериях – это тупик. Просто невозможно, и все. По моим представлениям, большая часть ДНК должна была потеряться при получении бактериальных библиотек: ведь ДНК может просто не попасть в бактерию или, все же попав, деградировать под действием бактериальных ферментов. Эдди, однако, энтузиазма не терял и утверждал, что мы получили нехарактерно низкий процент продукта секвенирования. Он даже говорил, что следующие попытки потребуют меньше материала и наверняка окажутся более успешными.

Несмотря на все воодушевление Эдди, я был уверен, что необходимо попробовать и пиросеквенирование: неправильно полагаться только на один метод. Вариант с пиросеквенированием, казалось, прямо создан для нашего материала: мы могли избежать потерь, неизбежных, когда имеешь дело с капризной бактерией. К тому же Джонатан Ротберг вместе с 454 запустил установку, способную секвенировать сотни тысяч молекул ДНК за день. До самого Джонатана просто так было не добраться: он очень мудро забаррикадировался от одержимых ученых, которым во что бы то ни стало нужна была новая технология и которые по самую макушку завалили бы его запросами и требованиями. Я попытался до него дотянуться, но ничего не вышло. В какой-то момент я посетовал на это Джину Майерсу – тому самому гению биоинформатики, который помог знаменитому Крейгу Вентеру сложить геном человека в 2000 году. Я познакомился с Джином на съезде биоинформатиков в Бразилии в 2001 году, и его шутливое отношение к любой проблеме немедленно завоевало мою симпатию. Нас окончательно сблизил общий интерес к горным лыжам и дайвингу. К моменту нашего рассказа Джин занимал должность профессора в Беркли и выступал советником в организации Ротберга, так что в июле 2005- го он составил мне протекцию и помог связаться с Джонатаном.

1 ... 29 30 31 32 33 34 35 36 37 ... 79
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?