litbaza книги онлайнРазная литератураКогда физики в цене - Ирина Львовна Радунская

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 30 31 32 33 34 35 36 37 38 ... 110
Перейти на страницу:
свойствами наподобие маленького магнитика. Стремясь сохранить свою ориентацию в пространстве, он ведет себя как крошечный волчок-гироскоп.

В своем опыте, произведенном в 1924 году, Штерн и Герлах пропускали пучок атомов серебра вдоль полюсов сильного магнита. Пучок получался испарением капельки серебра в вакууме. Испарившиеся атомы вылетали через небольшое отверстие в камеру, где помещался магнит. Там, конечно, тоже поддерживался вакуум, чтобы атомы летели, не испытывая никакой помехи. Если бы полюсы магнита были плоскими, а атомы действительно вели себя как магнитики, то они летели бы по прямым путям. Но Штерн и Герлах сделали полюсы своего магнита не плоскими, а придали им форму клиньев, направленных остриями один к другому. Силовые линии магнитного поля между такими полюсами очень искривляются, а само магнитное поле сильно изменяется по величине. Пролетая вдоль таких полюсов, атомы-магнитики летят не по прямым, а по криволинейным путям.

В конце своей установки Штерн и Герлах поместили стеклянную пластинку. Если магнит в камере отсутствовал, то на пластинке постепенно осаждалось небольшое пятнышко серебра. Но вот магнит установлен и опыт начался. Он должен определить, подчиняются ли атомы серебра законам классической физики или к ним применима теория Бора.

Классическая физика говорит, что отклонение атомов должно зависеть только от того, как направлена в пространстве их магнитная ось. С точки зрения классической физики ни одно направление не может быть предпочтительным. Значит, и отклонения у различных атомов могут быть любыми. Таким образом, руководствуясь законами классической физики, можно было ожидать, что атомы серебра, прилетев к пластинке, осядут на ней не пятнышком, а длинной полоской.

Основываясь же на квантовой теории Бора, Штерн и Герлах ожидали иного. По догадке Бора атомы-магнитики могут принимать в магнитном поле три положения. В этом случае ученые ожидали увидеть на пластинке не множество точек, образующих полоску, а только три точки.

Каково же было их удивление, когда они обнаружили на стеклянной пластинке вместо трех лишь две серебряные точки! Все оказалось гораздо сложнее. Опыт показал, что атомы серебра могут принимать в магнитном поле только два положения: вдоль поля и навстречу ему. Было ясно, что первоначальная квантовая механика Бора недостаточна для описания микромира. Нужно было построить более точную теорию. Впоследствии детали поведения микрочастиц во внешних полях были поняты и объяснены новой квантовой теорией, созданной Гейзенбергом, Шредингером и де Бройлем.

Этот опыт, впервые доказавший, что направление осей атомов в пространстве подчиняется законам квантовой механики, с первого взгляда не имеет отношения к нашей истории. Басов и Прохоров, изучив этот опыт и вооружившись новой теорией, вернулись к нему, чтобы использовать в своих целях. Они обратили внимание на то, что энергия атомов серебра в поле магнита в обоих пучках была различной. Штерн и Герлах просто об этом не думали. Цель у них была другой. Басов же и Прохоров обратили внимание на этот опыт именно потому, что он скрывал как раз то, что они искали. Разделив пучки при помощи простой диафрагмы, можно было получить готовый пучок активных атомов серебра!

Умение видеть скрытую суть явлений — одна из черт настоящего ученого. Басов и Прохоров рассмотрели в опыте Штерна — Герлаха то, о чем, несомненно, знали и другие. Знали, но оставляли без внимания. Ведь атомы, разделявшиеся на два пучка, отличались не только направлением своих осей, но и своей энергией в поле магнита. В одном летели атомы-передатчики, в другом — атомы-приемники.

Казалось, пути решения задачи ясны. Достаточно воспроизвести установку Штерна и Герлаха, дополнить ее диафрагмой, пропустить пучок атомов-передатчиков через подходящий резонатор, и атомы серебра начнут генерировать электромагнитные волны.

Но расчеты показали, что это не так. Таким простым путем невозможно получить настолько интенсивный пучок активных атомов, чтобы он не только компенсировал потери лучшего из резонаторов, но и излучил энергию в пространство.

К счастью, Басов и Прохоров были уже достаточно опытными исследователями, чтобы понимать, что простое повторение редко ведет к цели. Они знали, что избранное направление правильно, но надо искать дальше.

Теория подсказывала, что электрические поля в микромире действуют много сильнее, чем магнитные. Но, к сожалению, атомы не обладают электрическими свойствами, напоминающими свойства магнита. Значит, нужно было отказаться от применения атомов. Они перешли к молекулам. Почему? А потому, что многие молекулы оказываются электрическими двойниками магнитов. Молекулы в обычном состоянии электрически нейтральны, то есть у них положительные и отрицательные заряды равны. Но у многих из них центры, соответствующие расположению положительных и отрицательных зарядов, не совпадают. В результате в молекуле возникают «положительный конец» и «отрицательный конец», в какой-то мере похожие на северный и южный концы магнитной стрелки. Такие молекулы ведут себя в поле электрического конденсатора так же, как наэлектризованные палочки из бузины, которые обычно показывают в школе при опытах по электростатике. В электрическом поле плоского конденсатора они поворачиваются, как стрелка компаса в поле магнита. Неоднородные электрические поля отклоняют их так же, как неоднородные магнитные поля отклоняют атомы серебра.

Задолго до работ Басова и Прохорова ученики и последователи Штерна, к счастью, хорошо разработали установки для опытов с пучками различных молекул. В частности, были созданы конденсаторы специальной формы, которые способны фокусировать молекулы примерно так же, как стеклянные линзы фокусируют свет. Очень много в этой области сделали харьковские физики Корсунский и Фогель.

Осталось подобрать подходящую молекулу. Но и здесь им на помощь пришел коллективный опыт ученых.

Наиболее изученной радиоспектроскопистами в то время, а может быть и сейчас, была молекула аммиака. Именно у этой молекулы Клитон и Вильям еще в 1934 году обнаружили спектральные линии в сантиметровом диапазоне радиоволн. Уже в сороковых годах ее структура и электрические свойства были хорошо изучены. Естественно было проверить, не подойдет ли аммиак для новой работы?

Расчеты показали, что, пролетая вдоль оси конденсатора, состоящего из четырех стержней, попеременно заряженных положительным и отрицательным зарядом, более энергичные молекулы аммиака соберутся к оси конденсатора, а слабенькие уйдут в стороны.

Когда впервые был поставлен этот опыт, зрители могли воочию наблюдать картину борьбы между молекулами и силовым полем конденсатора. Водоворот поля захлестывал их, как прибой пловцов. Сильные пловцы обычно выбираются на берег, а слабых втягивает в пучину. Так и стихия электрических сил по-своему расправлялась с молекулами. Более слабые из них втягивались в область сильного поля к стержням конденсатора, другие, более сильные, пролетали мимо этой области, приближаясь к его оси. Поле сортировало молекулы. Оно оказалось своеобразным стрелочником, направляющим по различным путям молекулы, отличающиеся запасом энергии.

А затем, поставив за конденсатором резонатор с отверстием, совпадающим с осью конденсатора, можно было

1 ... 30 31 32 33 34 35 36 37 38 ... 110
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?