Шрифт:
Интервал:
Закладка:
Применение теории информации позволило сделать телефонные линии более эффективным средством передачи сообщений.[117]Но роль, которую сыграла теория информации, отнюдь не ограничивается увеличением прибыли телефонных компаний. Определение информации через простые физические состояния (такие, как положения "вкл" и "выкл" электронного переключателя) означало, что теперь информацию можно хранить на физических носителях, то есть на цифровых запоминающих устройствах. Долгое время для хранения информации использовались книги, написанные и читаемые людьми. Новые запоминающие устройства позволяли записывать и считывать информацию машинам, от которых не требовалось понимания смысла записываемых и считываемых знаков. И конечно, эти новые запоминающие устройства можно было наполнять уже новым содержанием.
Уже в 1943 году Уоррен Маккаллок и Уолтер Питтс выдвинули новую нейронную доктрину, согласно которой нейрон – это элементарная функциональная единица мозга, служащая для обработки информации. Маккаллок и Питтс также предположили, что из обширных сетей простых электронных "нейронов" можно сконструировать искусственный мозг. Первые компьютеры были сделаны не по образцу нейронных сетей, однако, подобно искусственным нейронным сетям, они представляли собой устройства, способные хранить, передавать и видоизменять информацию в соответствии с определенными правилами. Когда в сороковых годах были сконструированы первые такие компьютеры, их сразу стали называть "электронные мозги". Такие машины можно было научить делать то, что делает наш мозг.
В 1956 году наука о создании устройств, способных делать разные хитроумные вещи, получила название "искусственный интеллект". Исследовательская программа этой науки, как и любой другой, предполагала, что начать нужно с решения самых легких проблем. Восприятие окружающего мира казалось сравнительно легким делом. Почти все люди умеют с легкостью читать рукописный текст и узнавать лица, и поначалу казалось, что создать машину, способную читать рукописный текст и узнавать лица, должно быть тоже не особенно сложно. Игра в шахматы – напротив, очень сложное дело. Очень немногие люди способны играть в шахматы на уровне гроссмейстера. Создание машин, умеющих играть в шахматы, лучше было отложить на потом.
Прошло пятьдесят лет, и компьютер, предназначенный для игры в шахматы, выиграл у чемпиона мира.[118]Проблема научить машину восприятию, напротив, оказалась очень сложной. Люди по-прежнему умеют узнавать лица и читать рукописный текст намного лучше, чем машины. Почему же эта проблема оказалась такой сложной? Оказывается, даже моей способностью видеть, что сад у меня за окном полон разных объектов, очень сложно наделить машину. Тому есть много причин. Например, видимые объекты перекрывают друг друга, а некоторые из них еще и движутся.
Откуда я знаю, что это за коричневое пятно – часть забора, или дерева, или птицы? Мой мозг решает все эти удивительно сложные задачи и заставляет меня думать, что я воспринимаю мир, не прилагая никаких усилий. Как же он это делает?
Развитие теории информации и цифровых компьютеров показало, что наше восприятие – дело очень сложное. Но наш мозг с ним справляется. Означает ли это, что цифровой компьютер не может служить хорошей моделью мозга? Или нам нужно найти какие-то новые способы обработки информации и научить им компьютеры?
Создание теории информации было очень важным достижением. Оно позволило нам понять, как физическое явление – электрический импульс – может стать психическим явлением – нервным сигналом (сообщением). Но с первоначальной формулировкой была связана одна принципиальная проблема. Предполагалось, что объем информации в любом сообщении или, в более общем случае, в любом раздражителе полностью определяется этим раздражителем. Прекрасная концепция информации, но из нее следуют некоторые парадоксальные вещи.
Вспомним, что каждая буква в сообщении несет тем больше информации, чем она необычнее. Поэтому буква Q обычно несет много информации, а идущая за ней буква U не несет никакой информации. Тот же подход можно применить и к изображениям. Любое изображение состоит не из букв, а из элементов изображения (или пикселов), которые могут быть разного цвета. Рассмотрим простое изображение черного квадрата на белом фоне. Какие элементы этого изображения наиболее информативны? Когда наш взгляд движется по однотонно окрашенному участку, он не видит ничего необычного, потому что при этом не происходит никаких изменений. Но вот наш взгляд достигает границы, где проходит контур квадрата, и происходит неожиданное изменение цвета. Следовательно, в соответствии с теорией информации, наиболее информативны должны быть именно контуры изображения. О том же говорит нам интуиция. Если заменить объект его контурами, иными словами, оставить только информативные границы, мы по-прежнему сможем распознать этот объект.
Рис. 5.2. Мы лучше всего распознаем объекты по их контурам.
Мы можем легко узнать лицо по одним контурам (справа), но улыбка лучше распознается на размытом изображении (слева).
Но из этой формулировки следует парадокс. Согласно этому определению самым информативным изображением будет такое, в котором мы никак не сможем угадать следующий элемент, на который, двигаясь, упадет наш взгляд. То есть это изображение, целиком состоящее из точек, окрашенных случайным образом. Такие изображения мы видим, когда у нас что-то не так с телевизором и на его экране возникает рябь, так называемый "снег".
Рис. 5.3. Высокоинформативный набор случайных точек.
Это изображение несет максимум информации, так как нельзя предсказать, какой цвет имеет та или иная точка.