litbaza книги онлайнДомашняяТонкая физика. Масса, эфир и объединение всемирных сил - Фрэнк Вильчек

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 31 32 33 34 35 36 37 38 39 ... 73
Перейти на страницу:

Благодаря современной квантовой теории мир стал гораздо больше, чем Лаплас мог себе представить. В нашей игрушечной модели использовалась лишь горстка кубитов[37] но при этом она охватывала 32-мерный мир. Квантовая Сетка, которая воплощает в себе наше глубокое понимание реальности, предполагает множество кубитов в каждой точке пространства и времени. Кубиты в некоторой точке описывают различные вещи, которые могли бы в ней происходить. Например, один из них описывает вероятность того, что вы увидите (если посмотрите) электрон со спином вверх или вниз, другой — вероятность того, что вы увидите (если посмотрите) антиэлектрон со спином вверх или вниз, третий — вероятность того, что вы увидите (если посмотрите) красный кварк u со спином вверх или вниз... Другие кубиты описывают возможные результаты наблюдений, если вы посмотрите на фотоны, глюоны или другие частицы. Кроме того, если пространство и время непрерывны, что до сих пор очень успешно доказывалось существующими законами физики, то количество точек пространства-времени является бесконечным.

Мир больше не основан на подвешенных в пустоте атомах, поэтому его состояние больше не определяется положением и скоростью множества этих объектов. Вместо этого мир состоит из бесчисленного количества только что описанных кубитов. И чтобы описать его состояние, мы должны присвоить число — амплитуду вероятности — каждой возможной конфигурации кубитов. В нашей игрушечной модели из пяти кубитов мы обнаружили, что все возможные состояния заполняют 32-мерное пространство. Пространство, которое мы должны использовать для описания состояния Сетки, то есть наш мир, предполагает бесконечность бесконечностей.

Гугол — это число, равное 10100 — единице со 100 нулями. Это невероятно большое число. Оно, например, намного превышает число атомов в видимой Вселенной. Однако даже если мы заменим все пространство решеткой всего лишь с десятью точками в каждом направлении и поместим в каждой точке всего по одному кубиту, размерность квантово-механической версии этой схематичной модели мира намного превысит число гугол. На самом деле размерность этого пространства превысит гугол гуголов.

Таким образом, первая часть стоящей перед демоном задачи, учитывая «взаимное положение составляющих мир существ», является очень сложной. Чтобы определить состояние мира, демон должен найти конкретную точку в ОЧЕНЬ, ОЧЕНЬ БОЛЬШОМ пространстве. По сравнению с этой задачей найти иголку в стоге сена проще простого.

Однако это еще не конец. Ранее мы уже говорили о случайном поведении Сетки. Она наполнена квантовыми флуктуациями или виртуальными частицами. Это грубое, неформальное описание реальности, для более точного выражения которой у нас теперь есть язык. Говоря, что в Сетке происходят спонтанные процессы, мы имеем в виду то, что ее состояние не является простым. Если мы с высоким разрешением посмотрим в пространство-время, чтобы выяснить, что происходит в сущности, которую мы называем пустым пространством, например, как это делали экспериментаторы на ускорителе БЭПК, мы обнаружим множество возможных результатов. Каждый раз, когда мы будем смотреть, мы будем видеть что-то другое. Каждое наблюдение раскрывает часть волновой функции, которая описывает типичную, очень небольшую область пространства. Каждое наблюдение воплощает реализующуюся возможность, умноженную на значение некоторой амплитуды вероятности в пределах этой волновой функции.

Таким образом, мы ищем иголку, которая не находится ни в глубине стога, ни в каком-либо другом конкретном месте. Она находится в стороне, или, скорее, в этой стороне, и в той стороне, и в другой стороне и так далее в бесконечном количестве сторон.

Воображаемый демон Лапласа обладает совершенным знанием состояния мира. Он знает, где находится эта иголка. Но он воображаемый. Те из нас, кто не обладает совершенным знанием состояния мира, но все же хочет сделать какое-нибудь предсказание, сталкивается с некоторыми проблемами. Как мы можем приобрести некоторые из соответствующих знаний? Какое влияние окажут пробелы в наших знаниях? Как сказал Йоги Берра, по-видимому, научившись у Нильса Бора, «делать предсказания очень сложно, особенно относительно будущего». Существует (по крайней мере) две главные причины, почему так сложно предсказать будущее даже при наличии правильных уравнений.

Одной из них является теория хаоса. Грубо говоря, теория хаоса утверждает, что небольшие неопределенности в вашем знании о состоянии мира в момент времени t0 ведут к очень большим неопределенностям в том, что вы можете выяснить о состоянии мира в значительно более поздний момент времени t1.

Другой причиной является квантовая теория. Как мы уже говорили, квантовая теория, как правило, предсказывает вероятности, а не точные значения. На самом деле квантовая теория предоставляет совершенно определенные уравнения, описывающие изменения волновой функции системы во времени. Однако при использовании волновой функции для предсказания будущих наблюдений она предоставит вам лишь набор вероятностей для различных результатов.

Все это привело к следующему: мы стали намного скромнее со времен Лапласа в отношении того, что мы в принципе можем вычислить. Однако на практике мы отвечаем на вопросы, которые Лаплас не мог себе представить, с помощью средств, о которых он не мог и мечтать. Например...

Большая числодробилка

Хорошо информированные, современные вычислительные демоны знают, что они не могут просто вычислить все, как демон Лапласа. Их искусство заключается в том, чтобы обнаруживать аспекты реальности, которые им поддаются. К счастью, случай, неопределенность и хаос не поражают все аспекты Природы. Многие вещи, в расчете которых мы больше всего заинтересованы, вроде формы молекулы, которую мы могли бы использовать в качестве лекарственного средства, прочности материала, из которого мы могли бы построить самолет, или массы протона, представляют собой устойчивые аспекты реальности. Кроме того, эти системы можно рассматривать изолированно; их свойства не сильно зависят от состояния мира в целом[38]. Для демонов-вычислителей стабильные изолированные системы являются естественными объектами, детальные портреты которых они могут создать.

Итак, полностью осведомленные о трудностях, но неустрашенные герои физики, собравшись с силами, подают заявки на гранты, покупают кластеры компьютеров, паяют, программируют, отлаживают, даже думают — делают все, что нужно, чтобы вырвать у Сетки ответы.

Как мы вычисляем портрет протона?

Во-первых, мы должны заменить непрерывное пространство и время конечной структурой — решеткой из точек, которую способен обработать компьютер. Разумеется, это приближение, однако при достаточно малом расстоянии между точками ошибки также будут небольшими. Во-вторых, мы должны «втиснуть» ОЧЕНЬ, ОЧЕНЬ БОЛЬШУЮ квантовую реальность в классическую вычислительную машину. Квантово-механическое состояние Сетки существует в огромном пространстве, где его волновая функция охватывает множество возможных вариантов активности. Однако компьютер может манипулировать только несколькими вариантами одновременно. Поскольку уравнения для эволюции какого-либо из вариантов затрагивают все остальные варианты, классический компьютер должен хранить в памяти обширную библиотеку вариантов вместе с соответствующими амплитудами вероятности. Для развития текущего варианта компьютер шаг за шагом извлекает соответствующую информацию о старых вариантах. Для каждого сохраненного варианта он вычисляет изменения. Наконец, он сохраняет обновленную амплитуду вероятности для текущего варианта, приступает к развитию следующего и повторяет этот цикл снова и снова. Сетка — суровая дама.

1 ... 31 32 33 34 35 36 37 38 39 ... 73
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?