Шрифт:
Интервал:
Закладка:
Становление квантовой химии как самостоятельной науки связано с именем выдающегося немецкого физика Ганса Густавовича Гельмана. Для проведения расчетов Г. Гельман и американский физик Р. Фейнман сформулировали и доказали основные принципы расчета, получившие название "теорема Гельмана – Фейнмана". Эта теорема стала одним из основных инструментов квантовой химии. В 1934 г., спасаясь от нацистского режима в Германии, Гельман переехал на постоянное жительство в СССР. Он был зачислен как иностранный специалист в Физико-химический институт им. Л. Я. Карпова (Москва) на должность руководителя теоретической группы. Работая в институте, Гельман закончил писать книгу "Квантовая химия", а трое его учеников – М. Н. Головин, Н. Н. Туницкий и М. А. Ковнер – перевели рукопись на русский язык, после чего в 1937 г. была издана монография объемом 546 страниц. Параллельно Гельман совершенствовал и немецкий текст, который в том же году был издан в Вене. Благодаря этому фундаментальному труду впервые появился термин "квантовая химия". Долгие годы эта книга была единственной монографией, охватывающей почти все аспекты совсем еще юной науки.
В эти годы в СССР набрал максимальные обороты маховик сталинских репрессий. 9 марта 1938 г. Гельмана уволили из института и арестовали. Его обвинили в шпионаже и расстреляли 28 мая того же года (в то время для такого решения вполне достаточно было иметь иностранное гражданство). Ему было 35 лет. В 1957 г. его полностью реабилитировали посмертно, и в галерею Карповского института, где висят портреты работавших в его стенах наиболее выдающихся ученых, теперь помещен и портрет Г. Гельмана. Большинству отечественных квантовых химиков это имя неизвестно.
Постепенно выявились трудности, связанные с квантово-химическими расчетами. Оказалось, что точное решение уравнения Шрёдингера возможно только для молекулы водорода. При расчете более крупных молекул требуется вводить упрощения и приближения – и их удалось разработать. Это позволяет проводить расчет более сложных молекул с достаточно точным результатом. Основная сложность состояла в том, что при увеличении числа атомов в молекуле трудоемкость расчета возрастала почти с космической скоростью, и для полного расчета требовались огромные временные ресурсы.
Возникшие трудности привели к тому, что в середине 1950-х гг. был разработан принципиально иной способ расчета. В основу была положена идея рассматривать молекулу как объект классической механики Ньютона и проводить расчет с помощью предложенных им уравнений. Молекулу представляют как некую механическую модель – с учетом массы, зарядов атомов и упругости связей, однако при этом не учитывают поведение электронов. Такие расчеты были вполне "по силам" появившимся в это время ламповым компьютерам – между прочим, первые ЭВМ занимали огромное помещение. Обобщенно метод называют молекулярной механикой. Расчеты были вполне доступны, однако они могли описать лишь молекулы, находящиеся в «спокойном» состоянии, но не в процессе реакции. Молекулярную механику используют и в настоящее время – чаще для расчета крупных полимерных молекул и в основном биомолекул. Что неожиданно – метод оказался подспорьем в квантовой химии, о чем будет рассказано далее.
Появление полупроводниковых компьютеров способствовало быстрому развитию квантовой химии, и стали широко применяться квантово-химические расчеты, ранее выполнявшиеся ручными вычислениями. Все заметно упростилось и ускорилось, когда вычисления стали выполнять современные компьютеры. Возникли специальные программы, позволяющие химику-синтетику проводить подобные расчеты самостоятельно. Наиболее известна квантово-химическая программа Gaussian, разработанная с участием Джона Попла, лауреата Нобелевской премии 1998 г. по химии. Всего было создано свыше десятка подобных различных программ. Весьма привлекательна для рядовых химиков компактная бесплатная программа Priroda, созданная сотрудником МГУ имени М. В. Ломоносова Д. Н. Лайковым. Она отличается очень высоким быстродействием.
С помощью таких программ химик, исходя всего лишь из структурной формулы, может рассчитать:
а) наиболее энергетически выгодную пространственную структуру молекулы;
б) энтальпию образования вещества – фактически это энергия, которая выделяется при образовании молекулы из всех составляющих ее элементарных частиц;
в) тепловой эффект реакции;
г) заряды на атомах, входящих в состав молекулы;
д) ожидаемый инфракрасный и ядерно-магнитный спектр конкретного соединения;
е) внешний вид молекулярных орбиталей (о них подробнее рассказано в главе "Самая главная частица и ее жилище").
Существует еще целый ряд неупомянутых параметров, которые можно вычислить с помощью таких программ и которые химики используют для объяснения происходящих превращений. В процессе расчета программа выводит на экран молекулу в виде объемной модели. При желании можно посмотреть, как программа будет деформировать молекулу в поисках оптимальной структуры (фильм, увлекательный для химика). Кроме того, можно увидеть, как выглядят упомянутые в пункте е) полупрозрачные области наиболее вероятного расположения электронов – орбитали, внешне напоминающие облака.
Напомним, что все это можно проделать для пока не полученной, а только нарисованной молекулы. В отличие от упомянутой ранее молекулярной механики, при расчетах учитывается поведение электронов, что делает получаемые результаты намного более точными.
Постепенно химиков перестали удовлетворять знания о внутреннем строении молекулы – они захотели узнать, как она реагирует с другими молекулами. Иными словами, ученые заинтересовались не тем, как она выглядит, а тем, что с ней происходит. Были разработаны некоторые экспериментальные приемы, позволяющие понять механизмы протекающих реакций. Например, в реагирующую молекулу можно ввести изотопную метку – заменить, например, один из атомов на его более тяжелый изотоп – и далее проследить, в какое место она переместится в процессе реакции. Впрочем, таким способом мы фиксируем лишь начальный и конечный момент – и не можем увидеть процесс, поскольку химическое взаимодействие – то есть перемещение электронов – проходит молниеносно и потому скрыто от глаз исследователей.
Частично решить эту проблему позволила работа американского химика А. Зевейла, лауреата Нобелевской премии 1999 г. по химии. Он направлял на реагирующие молекулы очень короткие (фемтосекундные, 10–15 с) лазерные импульсы и анализировал полученные спектры, то есть получал «фотографию» быстродвижущихся объектов, используя мгновенную «фотовспышку». Однако этот метод экспериментально труден и применим только к простым объектам.
Все упомянутые расчетные программы, в том числе и Gaussian, оперируют с молекулами, которые находятся в "спокойном" состоянии, а не в процессе реакции. Могут ли эти программы показать не то, как выглядит молекула, а то, как она реагирует с другими молекулами? Теоретически такое возможно, но при расчете крупных биомолекул для проведения вычислений нужно невероятное количество времени, а если принять во внимание то, что процесс расчета иногда останавливается и требует внесения исправлений и уточнений, то станет ясно, что дождаться результатов расчета будет практически нереально.