litbaza книги онлайнДомашняяВирусы. Драйверы эволюции. Друзья или враги? - Майкл Кордингли

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 32 33 34 35 36 37 38 39 40 ... 103
Перейти на страницу:

Вскоре после того, как в 2009 году начал циркулировать вирус S-OIV, специалисты по молекулярной вирусологии принялись исследовать свойства нового вируса, стараясь выяснить его происхождение. Откуда и как он возник? Выяснилось, что вирус имеет очень сложную генеалогию (Smith et al., 2009; Zimmer, Burke, 2009). Из восьми генных сегментов шесть были унаследованы от вирусов с тройным перемещением, которые сами произошли от человеческого вируса H3N2, птичьего вируса и классического свиного вируса H1N1. Оставшиеся два сегмента могли происходить из свиного вируса H1N1 птичьего происхождения, который был обнаружен на просторах Евразии в 1979 году. Интересно, что вирус испанки продолжает свое существование в этой же пандемической линии в форме трех генных сегментов: гемагглютинина (ГА), неструктурных белков и нуклеокапсида, каждый из которых был передан путем тройного перемещения генного материала. Эти два вируса свиного гриппа H1N1 подверглись смешиванию в клетках свиней с формированием S-OIV незадолго до того, как были переданы человеку и вызвали пандемию. Это вполне очевидный факт, потому что генетическое расстояние между их генами и генами родительских вирусов указывают на степень дивергенции, которая была бы возможна только при условии циркуляции – в течение некоторого времени – в свиной популяции. Представляется весьма вероятным, что «перетасованный» вирус, появившийся во время пандемии 2009 года в виде штамма H1N1, некоторое время вызревал, необнаруженный, в мексиканской свиной популяции, прежде чем инфицировать первого пациента (Smith et al., 2009). Эти события перемещения генетического материала привели к соединению подтипа 1 ГА и подтипа 1 НА, то есть тех же подтипов, которые циркулировали в 2008 году. Оба подтипа происходят от вируса испанки 1918 года, но генетически от него отличаются: подтип 1 НА происходит от птичьего вируса, а также от вируса евразийского свиного гриппа, а подтип ГА 1 происходит от штамма классического свиного гриппа H1N1. Несмотря на то что ген гемагглютинина происходит от гена предкового вируса 1918 года H1N1, он сильно изменился в своем развитии за девяноста лет адаптации к хозяевам различных биологических видов. Подтип гемагглютинина, обнаруженный в человеческом вирусе H1N1, который продолжает циркулировать и в наши дни (а в 2009 году был использован для изготовления вакцины), совершил большой эволюционный путь, и сегодня сильно отличается от своего предка – вируса свиного гриппа. К 2009 году человеческая популяция уже не имела иммунологической памяти ни для одного поверхностного антигена группы S-OIV.

Независимые эволюционные траектории генов антигенов в организмах разных хозяев являются мощным источником генетического разнообразия вируса гриппа. Подтипы гемагглютинина или нейраминидазы, которые, соединяясь, приводят к образованию нового пандемического вируса, не являются равноправными; они могут иметь разную эволюционную историю и играть важную роль в возникновении успешных генетических линий вируса гриппа. Вместе с внутривидовым перемещением генных сегментов эти эволюционные процессы могут создавать антигенную анонимность возникающего вируса и определенно являются основными факторами эволюции пандемического штамма. С другой стороны, Холмс и его коллеги (2005) изучали группы вируса H3N2 и пришли к выводу, что внутритиповые перемещения между совместно циркулирующими таксонами тоже вносят существенный вклад в генетическое разнообразие вируса. В ходе сходного анализа ученые изучили полные исторические последовательности геномов человеческого вируса H1N1, прямого потомка вируса испанки 1918 года, за период с 1918 по 2006 год для того, чтобы во всех деталях прояснить ход независимой эволюции (и, следовательно, филогенетическую историю) каждого генного сегмента (Nelson et al., 2008). Авторы построили филогенетическое дерево на основании дивергенции нуклеотидных и аминокислотных последовательностей каждого из вирусных генов. Так же как в случае H3N2, наблюдали перемещения между генетически разошедшимися таксонами вируса H1N1. Это было очевидно, потому что генетические деревья, построенные для каждого из различных генных сегментов, различались между собой. Эти деревья не были конгруэнтны, но составляли обширную разветвленную сеть. В течение шестидесяти восьми лет разделенных географически и во времени сезонных эпидемий гриппа штаммы вируса H1N1 постоянно подвергались перемещению в непрерывных циклах эволюционной оптимизации, а не постепенным изменениям, которые шаг за шагом приводили к созданию «команды мечты», чья тактика значительно отличается от тактики соперников.

Эта работа проливает свет на потенциал генетических изменений, происходящих между пандемиями, помимо антигенных сдвигов, и приводящих к необычным перемещениям, вызывающим изменения патогенности вируса. Одно из таких внутритиповых перемещений в геноме вируса H1N1 произошло в 1947 году: созданная в том году вакцина оказалась неэффективной, но вирусные подтипы остались неизменными; последовала тяжелая эпидемия вируса H1N1 (Kilbourne, 2006). Анализ нового штамма позволил выявить, что значительно изменился сегмент гена гемагглютинина. Последующих антигенных изменений оказалось достаточно для того, чтобы дать вирусу гриппа значительные преимущества. Другие тяжелые эпидемии, случавшиеся между пандемиями, такие, например, как эпидемии 1950–51 года, также были, возможно, связаны с внутритиповыми перемещениями генных сегментов. Геном вируса гриппа представляет собой сумму восьми генных сегментов, а не просто набор гликопротеинов оболочки. Эта команда генов должна быть очень сыгранной для того, чтобы конечный исход оказался оптимальным для вирусного генома. Это утверждение можно проиллюстрировать проведенными лабораторными экспериментами по реконструкции вирулентного вируса испанки 1918 года (см. главу 11). Только вирусы, реконструированные из всех восьми исходных генных сегментов вируса, при соединении формировали вирус с ожидаемой вирулентностью предкового вируса; ни одна другая комбинация восьми генных сегментов не позволяла этого добиться. Таким образом, команду мечты может создать уникальное сочетание генов; основа такой оптимальной комбинации остается для нас неясной. Мы не знаем доподлинно, что вирусы гриппа изменяют свои генные линии для оптимизации игры своей команды. Случайные события, мутационные изменения и хаотичные обмены генных сегментов создают условия, при которых грипп может – с беспрецедентным успехом – эмпирически проверить все возможные комбинации каждого игрока команды. Наиболее успешные генетические линии возникают в результате деятельности замечательного эволюционного поисковика, встроенного в генетическую программу вируса гриппа.

Глава 6 Альтернативная жизнь вирусов

До сих пор мы рассматривали вирусы, вызывающие быстротечные и, как правило, самостоятельно разрешающиеся инфекции. Я ограничился описанием человеческого риновируса и вируса гриппа. Оба вируса ведут себя подобно литическим фагам, то есть придерживаются тактики «бей и беги». Преходящие, проявляющиеся яркой симптоматикой заболевания суть основа их, если можно так выразиться, политики, позволяющей передавать вирусные частицы от одного хозяина другому. В типичных случаях заболевание прекращается после того, как иммунная система очищает организм хозяина от вируса. После этого организм хозяина приобретает стойкий иммунитет и становится невосприимчивым к повторному инфицированию тем же вирусом. К другим вирусам, попадающим в ту же рубрику, относятся вирусы парагриппа, вирус кори, вирус краснухи, вирус свинки, вирус полиомиелита, а также вирус оспы. Эти вирусы могут успешно поддерживать численность своей популяции только в тех случаях, когда существует достаточное количество восприимчивых потенциальных хозяев, которых может инфицировать вирус. Отсюда возникла точка зрения, согласно которой эти вирусы являются относительно современными – они инфицировали человека в недавнем прошлом нашего биологического вида. Еще в пятидесятые годы двадцатого века было подсчитано, что вирус кори не может поддерживать непрерывность своего существования в человеческой популяции меньше 250–300 тысяч человек. Эта гипотеза получила дополнительное подтверждение в работе, выполненной Фрэнсисом Блэком в Йельском университете. Исследование Блэка, посвященное заболеваемости корью в островных популяциях, показали, что прекращение передачи вируса неизбежно наступает в популяциях численностью менее 500 тысяч человек (Black, 1966). На основании этих данных Блэк предположил, что в первобытном обществе просто не существовало популяций, способных поддерживать размножение и передачу вируса кори.

1 ... 32 33 34 35 36 37 38 39 40 ... 103
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?