litbaza книги онлайнДомашняяДостучаться до небес. Научный взгляд на устройство Вселенной - Лиза Рэндалл

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 32 33 34 35 36 37 38 39 40 ... 123
Перейти на страницу:

Если бы протоны были фундаментальными частицами, это был бы совершенно правильный вывод. Однако, как мы уже говорили в главе 5, протоны состоят из более мелких деталей. Протоны содержат кварки, связанные глюонами. Но даже в этом случае, если бы дело ограничивалось тремя валентными кварками — двумя верхними и одним нижним, — которые, собственно, несут на себе заряд частицы, дело обстояло бы немногим лучше: никакая пара валентных кварков не дает нулевого суммарного заряда.

Достучаться до небес. Научный взгляд на устройство Вселенной

РИС. 22. Сравнительная таблица коллайдеров. Показаны их энергии, что именно сталкивается и форма ускорителя * LEP был модернизирован и превратился в LEP2.

Однако большая часть массы протона обусловлена не массой содержащихся в нем кварков. Своей массой протон обязан прежде всего энергии связей, удерживающих эту частицу как единое целое. Летящий с высокой скоростью протон несет на себе огромное количество энергии. При этом он помимо трех валентных кварков, ответственных за заряд, содержит целое море кварков, антикварков и глюонов. Это значит, что, если заглянуть внутрь высокоэнергетического протона, там обнаружатся не только три валентных кварка, но и множество виртуальных кварков, антикварков и глюонов, заряды которых складываются и дают в сумме нуль.

Из сказанного следует, что при рассмотрении протонных столкновений нам следует быть немного более аккуратными в своих логических построениях и выводах, чем когда мы рассуждаем об электронах. Интересные события — результат столкновения субчастиц и заряды в них складываются тех же субчастиц, а вовсе не протонов. Хотя на общий заряд протона «дополнительные» кварки и глюоны не влияют, в его составе они все же присутствуют.

При столкновении протонов может так случиться, что один из трех валентных кварков одного протона столкнется с одним из валентных кварков другого протона, и тогда суммарный заряд частиц, участвующих в столкновении, будет ненулевым. Даже при ненулевом суммарном заряде могут иногда происходить интересные события с участием удачной суммы зарядов, но такое столкновение, конечно, не имеет тех широчайших возможностей, которые характерны для столкновения с нулевым суммарным зарядом.

Однако мы будем наблюдать немало и других интересных столкновений с участием частиц из виртуального моря; здесь вполне возможны ситуации, когда какой‑нибудь кварк столкнется с соответствующим антикварком или глюон с глюоном, и тогда столкновение будет иметь нулевой суммарный заряд. При столкновении протонов любой кварк одного из них может столкнуться с соответствующим антикварком из другого, хотя, конечно, это не самый распространенный тип столкновения. Если задаться вопросом, что происходит в БАКе, то окажется, что свою роль в столкновениях протонов играют все возможные процессы, включая и столкновения субчастиц из виртуального моря. Более того, по мере ускорения протонов и, соответственно, повышения их энергии, «морские» столкновения становятся все более вероятными.

Полный заряд протона не определяет, какие частицы образуются при столкновении, потому что остальная часть протона просто улетает дальше. Части протонов, не участвующие в событии, уносят с собой остальную часть заряда частицы, которая затем теряется. Это, кстати говоря, ответ на вопрос падуанского мэра, который спросил, куда деваются при столкновениях в БАКе заряды протонов. Все дело в составной природе протона и высокой энергии летящих частиц; именно она гарантирует, что в столкновении непосредственно участвуют лишь самые мелкие из известных нам элементов — кварки и глюоны.

Поскольку в столкновении участвуют только части протонов, причем иногда (при столкновениях с нулевым суммарным зарядом) это виртуальные фрагменты, выбор между протон–протонным и протон–антипротонным коллайдерами не так уж очевиден. Если в прошлом в низкоэнергетических коллайдерах имело смысл идти на дополнительные сложности, связанные с производством и хранением антипротонов, чтобы обеспечить как можно большее число интересных событий, то теперь в БАКе все иначе. При тех уровнях энергии, с которыми работаем, на виртуальные кварки, антикварки и глюоны приходится значительная часть энергии протона.

Итак, физики и инженеры проекта БАКа выбрали вариант с двумя пучками протонов и отказались от работы с протонами и антипротонами[26]. При этом высокая светимость, то есть высокое число событий, становится гораздо более достижимой целью, а получить пучок протонов все же гораздо проще, чем пучок антипротонов такой же плотности.

Так что БАК — протон–протонный, а не протон–антипротонный коллайдер. В нем происходит очень много столкновений (конечно, ведь с двумя протонными пучками добиться этого гораздо проще), и потенциал его огромен!

ГЛАВА 7. НА КРАЮ ВСЕЛЕННОЙ

Первого декабря 2009 г. я неохотно проснулась в шесть часов утра в отеле Marriott в Барселоне, чтобы отправиться в аэропорт. Я прилетала в город на испанскую премьеру небольшой оперы о физиках и открытиях, написанную на мое либретто. Уикенд получился просто замечательный, но я очень устала и с нетерпением ждала возвращения домой. Однако меня задержал в пути еще один приятный сюрприз.

Заголовок ведущей новости в свежей газете, которую работники отеля не забыли оставить возле моей двери, звучал так: «Ядерный ускоритель устанавливает рекорд». Да, представьте себе! Главной новостью дня была не какая‑нибудь жуткая катастрофа и не забавный случай, а рассказ о том, что пару дней назад ученым удалось получить на Большом адронном коллайдере рекордное значение энергии. Журналист писал о новом достижении БАКа с неподдельным возбуждением.

Еще через пару недель, когда два высокоэнергетических протонных пучка и в самом деле столкнулись, на первой полосе The New York Times появилась новостная статья под заголовком «Коллайдер устанавливает рекорд, а Европа принимает у США эстафету лидерства». О рекордной энергии, ставшей темой первой новости, здесь уже говорилось как всего лишь о первом из целой серии рубежей, которых должен достигнуть БАК в ближайшем десятилетии.

В настоящее время на БАКе исследуются самые крохотные расстояния за всю историю человечества. В то же время спутниковые телескопы и обсерватории исследуют крупнейшие расстояния в космосе и разбираются в подробностях реликтового микроволнового фонового излучения, сохранившегося со времен Большого взрыва.

Мы сегодня много знаем о строении Вселенной. Тем не менее, как и в большинстве аналогичных случаев, расширение круга знаний порождает новые вопросы. Некоторые открытия буквально обнажают принципиальные пробелы в наших теоретических построениях. Во многих случаях, однако, мы понимаем природу недостающих звеньев достаточно хорошо, чтобы сознавать, что именно следует искать и как.

1 ... 32 33 34 35 36 37 38 39 40 ... 123
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?